Abstract
Automatic speech recognition (ASR) task constitutes a well-known issue among fields like Natural Language Processing (NLP), Digital Signal Processing (DSP) and Machine Learning (ML). In this work, a robust supervised classification model is presented (MFCCs + autocor + SVM) for feature extraction of solo speech signals. Mel Frequency Cepstral Coefficients (MFCCs) are exploited combined with Content Based Image Retrieval (CBIR) features extracted from spectrogram produced by each frame of the speech signal. Improvement of classification accuracy using such extended feature vectors is examined against using only MFCCs with several classifiers for three scenarios of different number of speakers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Yu, G.: Audio Classification From Time-Frequency Texture, Massachusetts Institute of Technology. Ecole Polytechnique, Palaiseau Cedex, NSL, Time, pp. 1677–1680 (2009)
Muroi, T., Takashima, R., Takiguchi, T., Ariki, Y.: Gradient-based acoustic features for speech recognition. In: International Symposium on Intelligent Signal Processing Communication Systems 2009, ISPACS 2009, pp. 445–448 (2009)
Khunarsa, P., Lursinsap, C., Raicharoen, T.: Impulsive environment sound detection by neural classification of spectrogram and mel-frequency coefficient images. In: Zeng, Z., Wang, J. (eds.) Advances in Neural Network Research and Applications. LNEE, vol. 67, pp. 337–346. Springer, Heidelberg (2010)
Davis, S.B., Mermelstein, P.: Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. Trans. Acoust. Speech Signal Process. 28(4), 357–366 (1980)
Huang, J., Kumar, S.R., Mitra, M., Zhu, W.-J., Zabih, R.: Image indexing using color correlograms. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 762–768 (1997)
Lux, M., Chatzichristofis, S.A.: Lire: lucene image retrieval. In: Proceedings of the 16th ACM International Conference on Multimedia - MM 2008, p. 1085 (2008)
Lux, M.: Content based image retrieval with LIRe. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 735–738 (2011)
Lux, M., Oge, M.: Visual Information Retrieval using Java and LIRE. Morgan & Claypool, San Rafael (2013)
Souli, S., Lachiri, Z.: Environmental sounds spectrogram classification using log-gabor filters and multiclass support vector machines. Int. J. Comput. 9(4–3), 142–149 (2012)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 720–723 (2007)
Lei, H., Meyer, B.T., Mirghafori, N.: Spectro-temporal Gabor features for speaker recognition. In: ICASSP, pp. 4241–4244 (2012)
Gramss, T.: Fast algorithms to find invariant features for a word recognizing neural net. Int. J. Speech Technol. 18(1), 180–184 (2014)
Kleinschmidt, M.: Localized spectro-temporal features for automatic speech recognition, pp. 2573–2576 (2003)
Kleinschmidt, M.: Methods for capturing spectro-temporal modulations in automatic speech recognition. Acta Acust. - Acust. 88(3), 416–422 (2002)
Nilufar, S., Ray, N., Molla, M.K.I., Hirose, K. Spectrogram based features selection using multiple kernel learning for speech/music discrimination. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 501–504 (2012)
Dennis, J., Tran, H.D., Li, H.: Spectrogram image feature for sound event classification in mismatched conditions. IEEE Signal Process. Lett. 18(2), 130–133 (2011)
Ghosal, A., Chakraborty, R., Dhara, B.C., Saha, S.K.: Song/instrumental classification using spectrogram based contextual features. In: Proceedings of the CUBE International Information Technology Conference - CUBE 2012, p. 21 (2012)
Khunarsal, P., Lursinsap, C., Raicharoen, T.: Very short time environmental sound classification based on spectrogram pattern matching. Inf. Sci. (Ny) 243, 57–74 (2013)
He, L., Lech, M., Maddage, N., Allen, N.: Stress and emotion recognition using log-Gabor filter analysis of speech spectrograms. In: Proceedings - 2009 3rd International Conference on Affective Computing and Intelligent Interaction Work. ACII 2009, pp. 1–5 (2009)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software. In: ACM SIGKDD Explorations Newsletter, vol. 11, no. 1, p. 10 (2009)
Mayo, M.: ImageFilter WEKA filter that uses LIRE to extract image features (2015). https://github.com/mmayo888/ImageFilter
Georganti, E., May, T., Van De Par, S., Mourjopoulos, J.: Sound source distance estimation in rooms based on statistical properties of binaural signals. IEEE Trans. Audio, Speech Lang. Process. 21(8), 1727–1741 (2013)
Cummins, F., Grimaldi, M., Leonard, T., Simko, J.: The CHAINS speech corpus: CHAracterizing INdividual speakers. In: Proceedings of the SPECOM, pp. 1–6 (2006)
Chatzichristofis, S.A., Boutalis, Y.S., Arampatzis, A.: Accelerating image retrieval using Binary Haar Wavelet transform on the color and edge directivity descriptor. In: Proceedings of the 5th International Multi-Conference Computing in the Global Information Technology, ICCGI 2010, vol. 4, no. 1, pp. 41–47 (2010)
Jalab, H.: Image retrieval system based on color layout descriptor and Gabor filters. In: IEEE Conference on Open Systems, pp. 32–36 (2011)
Chatzichristofis, S.A., Boutalis, Y.S.: FCTH: fuzzy color and texture histogram - a low level feature for accurate image retrieval. In: 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services, pp. 191–196 (2008)
Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: CIVR 2007 Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 401–408 (2007)
Thiruvengatanadhan, R.: Speech/Music Classification using SVM. Int. J. Comput. Appl. 65(6), 36–41 (2013)
Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–39 (2011)
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)
Paraskevas, I., Rangoussi, M.: The hartley phase spectrum as an assistive feature for classification. In: Solé-Casals, J., Zaiats, V. (eds.) NOLISP 2009. LNCS, vol. 5933, pp. 51–59. Springer, Heidelberg (2010)
Hong, Y., Zhu, W.: Spatial co-training for semi-supervised image classification. Pattern Recognit. Lett. 63, 59–65 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Karlos, S., Fazakis, N., Karanikola, K., Kotsiantis, S., Sgarbas, K. (2016). Speech Recognition Combining MFCCs and Image Features. In: Ronzhin, A., Potapova, R., Németh, G. (eds) Speech and Computer. SPECOM 2016. Lecture Notes in Computer Science(), vol 9811. Springer, Cham. https://doi.org/10.1007/978-3-319-43958-7_79
Download citation
DOI: https://doi.org/10.1007/978-3-319-43958-7_79
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-43957-0
Online ISBN: 978-3-319-43958-7
eBook Packages: Computer ScienceComputer Science (R0)