[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Speech Recognition Combining MFCCs and Image Features

  • Conference paper
  • First Online:
Speech and Computer (SPECOM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9811))

Included in the following conference series:

Abstract

Automatic speech recognition (ASR) task constitutes a well-known issue among fields like Natural Language Processing (NLP), Digital Signal Processing (DSP) and Machine Learning (ML). In this work, a robust supervised classification model is presented (MFCCs + autocor + SVM) for feature extraction of solo speech signals. Mel Frequency Cepstral Coefficients (MFCCs) are exploited combined with Content Based Image Retrieval (CBIR) features extracted from spectrogram produced by each frame of the speech signal. Improvement of classification accuracy using such extended feature vectors is examined against using only MFCCs with several classifiers for three scenarios of different number of speakers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu, G.: Audio Classification From Time-Frequency Texture, Massachusetts Institute of Technology. Ecole Polytechnique, Palaiseau Cedex, NSL, Time, pp. 1677–1680 (2009)

    Google Scholar 

  2. Muroi, T., Takashima, R., Takiguchi, T., Ariki, Y.: Gradient-based acoustic features for speech recognition. In: International Symposium on Intelligent Signal Processing Communication Systems 2009, ISPACS 2009, pp. 445–448 (2009)

    Google Scholar 

  3. Khunarsa, P., Lursinsap, C., Raicharoen, T.: Impulsive environment sound detection by neural classification of spectrogram and mel-frequency coefficient images. In: Zeng, Z., Wang, J. (eds.) Advances in Neural Network Research and Applications. LNEE, vol. 67, pp. 337–346. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Davis, S.B., Mermelstein, P.: Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. Trans. Acoust. Speech Signal Process. 28(4), 357–366 (1980)

    Article  Google Scholar 

  5. Huang, J., Kumar, S.R., Mitra, M., Zhu, W.-J., Zabih, R.: Image indexing using color correlograms. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 762–768 (1997)

    Google Scholar 

  6. Lux, M., Chatzichristofis, S.A.: Lire: lucene image retrieval. In: Proceedings of the 16th ACM International Conference on Multimedia - MM 2008, p. 1085 (2008)

    Google Scholar 

  7. Lux, M.: Content based image retrieval with LIRe. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 735–738 (2011)

    Google Scholar 

  8. Lux, M., Oge, M.: Visual Information Retrieval using Java and LIRE. Morgan & Claypool, San Rafael (2013)

    Google Scholar 

  9. Souli, S., Lachiri, Z.: Environmental sounds spectrogram classification using log-gabor filters and multiclass support vector machines. Int. J. Comput. 9(4–3), 142–149 (2012)

    Google Scholar 

  10. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 720–723 (2007)

    Google Scholar 

  11. Lei, H., Meyer, B.T., Mirghafori, N.: Spectro-temporal Gabor features for speaker recognition. In: ICASSP, pp. 4241–4244 (2012)

    Google Scholar 

  12. Gramss, T.: Fast algorithms to find invariant features for a word recognizing neural net. Int. J. Speech Technol. 18(1), 180–184 (2014)

    Google Scholar 

  13. Kleinschmidt, M.: Localized spectro-temporal features for automatic speech recognition, pp. 2573–2576 (2003)

    Google Scholar 

  14. Kleinschmidt, M.: Methods for capturing spectro-temporal modulations in automatic speech recognition. Acta Acust. - Acust. 88(3), 416–422 (2002)

    Google Scholar 

  15. Nilufar, S., Ray, N., Molla, M.K.I., Hirose, K. Spectrogram based features selection using multiple kernel learning for speech/music discrimination. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 501–504 (2012)

    Google Scholar 

  16. Dennis, J., Tran, H.D., Li, H.: Spectrogram image feature for sound event classification in mismatched conditions. IEEE Signal Process. Lett. 18(2), 130–133 (2011)

    Article  Google Scholar 

  17. Ghosal, A., Chakraborty, R., Dhara, B.C., Saha, S.K.: Song/instrumental classification using spectrogram based contextual features. In: Proceedings of the CUBE International Information Technology Conference - CUBE 2012, p. 21 (2012)

    Google Scholar 

  18. Khunarsal, P., Lursinsap, C., Raicharoen, T.: Very short time environmental sound classification based on spectrogram pattern matching. Inf. Sci. (Ny) 243, 57–74 (2013)

    Article  Google Scholar 

  19. He, L., Lech, M., Maddage, N., Allen, N.: Stress and emotion recognition using log-Gabor filter analysis of speech spectrograms. In: Proceedings - 2009 3rd International Conference on Affective Computing and Intelligent Interaction Work. ACII 2009, pp. 1–5 (2009)

    Google Scholar 

  20. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software. In: ACM SIGKDD Explorations Newsletter, vol. 11, no. 1, p. 10 (2009)

    Google Scholar 

  21. Mayo, M.: ImageFilter WEKA filter that uses LIRE to extract image features (2015). https://github.com/mmayo888/ImageFilter

  22. Georganti, E., May, T., Van De Par, S., Mourjopoulos, J.: Sound source distance estimation in rooms based on statistical properties of binaural signals. IEEE Trans. Audio, Speech Lang. Process. 21(8), 1727–1741 (2013)

    Article  Google Scholar 

  23. Cummins, F., Grimaldi, M., Leonard, T., Simko, J.: The CHAINS speech corpus: CHAracterizing INdividual speakers. In: Proceedings of the SPECOM, pp. 1–6 (2006)

    Google Scholar 

  24. Chatzichristofis, S.A., Boutalis, Y.S., Arampatzis, A.: Accelerating image retrieval using Binary Haar Wavelet transform on the color and edge directivity descriptor. In: Proceedings of the 5th International Multi-Conference Computing in the Global Information Technology, ICCGI 2010, vol. 4, no. 1, pp. 41–47 (2010)

    Google Scholar 

  25. Jalab, H.: Image retrieval system based on color layout descriptor and Gabor filters. In: IEEE Conference on Open Systems, pp. 32–36 (2011)

    Google Scholar 

  26. Chatzichristofis, S.A., Boutalis, Y.S.: FCTH: fuzzy color and texture histogram - a low level feature for accurate image retrieval. In: 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services, pp. 191–196 (2008)

    Google Scholar 

  27. Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: CIVR 2007 Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 401–408 (2007)

    Google Scholar 

  28. Thiruvengatanadhan, R.: Speech/Music Classification using SVM. Int. J. Comput. Appl. 65(6), 36–41 (2013)

    Google Scholar 

  29. Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–39 (2011)

    Article  Google Scholar 

  30. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Paraskevas, I., Rangoussi, M.: The hartley phase spectrum as an assistive feature for classification. In: Solé-Casals, J., Zaiats, V. (eds.) NOLISP 2009. LNCS, vol. 5933, pp. 51–59. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  32. Hong, Y., Zhu, W.: Spatial co-training for semi-supervised image classification. Pattern Recognit. Lett. 63, 59–65 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stamatis Karlos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Karlos, S., Fazakis, N., Karanikola, K., Kotsiantis, S., Sgarbas, K. (2016). Speech Recognition Combining MFCCs and Image Features. In: Ronzhin, A., Potapova, R., Németh, G. (eds) Speech and Computer. SPECOM 2016. Lecture Notes in Computer Science(), vol 9811. Springer, Cham. https://doi.org/10.1007/978-3-319-43958-7_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43958-7_79

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43957-0

  • Online ISBN: 978-3-319-43958-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics