Abstract
This paper introduces a novel and efficient segmentation method designed for articulated hand motion. The method is based on a graph representation of temporal structures in human hand-object interaction. Along with the method for temporal segmentation we provide an extensive new database of hand motions. The experiments performed on this dataset show that our method is capable of a fully automatic hand motion segmentation which largely coincides with human user annotations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Jörg, S., Hodgins, J., O’Sullivan, C.: The perception of finger motions. In: Proceedings of the APGV, pp. 129–133 (2010)
Jörg, S., Hodgins, J.K., Safonova, A.: Data-driven finger motion synthesis for gesturing characters. ACM Trans. Graph. 31(6), 189:1–189:7 (2012)
Zhao, W., Chai, J., Xu, Y.Q.: Combining marker-based mocap and RGB-D camera for acquiring high-fidelity hand motion data. In: Proceedings of the ACM SCA, pp. 33–42 (2012)
Tognetti, A., Carbonaro, N., Zupone, G., Rossi, D.D.: Characterization of a novel data glove based on textile integrated sensors. In: IEEE EMBS, pp. 2510–2513 (2006)
Dipietro, L., Sabatini, A.M., Dario, P.: A survey of glove-based systems and their applications. IEEE Trans. SMC-C 38(4), 461–482 (2008)
Vögele, A., Krüger, B., Klein, R.: Efficient unsupervised temporal segmentation of human motion. In: Proceedings of the ACM SCA (2014)
Zhou, F., De la Torre, F., Hodgins, J.K.: Hierarchical aligned cluster analysis for temporal clustering of human motion. IEEE Trans. PAMI 35, 582–596 (2013)
Wheatland, N., Wang, Y., Song, H., Neff, M., Zordan, V., Jörg, S.: State of the art in hand and finger modeling and animation. Comput. Graph. Forum 34(2), 735–760 (2015)
Arkenbout, E.A., de Winter, J.C.F., Breedveld, P.: Robust hand motion tracking through data fusion of 5DT data glove and Nimble VR kinect camera measurements. Sensors 15(12), 31644–31671 (2015)
Ju, Z., Liu, H.: Human hand motion analysis with multisensory information. IEEE/ASME Trans. Mechatron. 19(2), 456–466 (2014)
CMU: Carnegie Mellon University Graphics Lab: Motion Capture Database (2013)
Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., Weber, A.: Documentation Mocap database HDM05. Technical report CG-2007-2, Universität Bonn (2007)
Goldfeder, C., Ciocarlie, M.T., Dang, H., Allen, P.K.: The columbia grasp database. In: IEEE ICRA, pp. 1710–1716 (2009)
Feix, T., Romero, J., Ek, C.H., Schmiedmayer, H.B., Kragic, D.: A metric for comparing the anthropomorphic motion capability of artificial hands. IEEE Trans. Robot. 29(1), 82–93 (2013)
Atzori, M., Gijsberts, A., Heynen, S., Hager, A.G.M., Deriaz, O., van der Smagt, P., Castellini, C., Caputo, B., Müller, H.: Building the ninapro database: a resource for the biorobotics community. In: Proceedings of the IEEE/RAS-EMBS BioRob, pp. 1258–1265 (2012)
Beaun, P., Coros, S., van de Panne, M., Poulin, P.: Motion-motif graphs. In: Proceedings of the ACM SCA, pp. 117–126 (2008)
Zhou, F., la Torre, F.D., Hodgins, J.K.: Aligned cluster analysis for temporal segmentation of human motion. In: Proceedings of the IEEE CAFGR (2008)
Min, J., Chai, J.: Motion graphs++: a compact generative model for semantic motion analysis and synthesis. ACM Trans. Graph. 31(6), 153:1–153:12 (2012)
Krüger, B., Vögele, A., Willig, T., Yao, A., Klein, R., Weber, A.: Efficient unsupervised temporal segmentation of motion data. CoRR abs/1510.06595 (2015)
Levine, S., Theobalt, C., Koltun, V.: Real-time prosody-driven synthesis of body language. ACM Trans. Graph. 28(5), 172:1–172:10 (2009)
Mousas, C., Anagnostopoulos, C.N., Newbury, P.: Finger motion estimation and synthesis for gesturing characters. In: Proceedings of the SCCG, pp. 97–104 (2015)
Ekvall, S., Kragic, D.: Grasp recognition for programming by demonstration. In: Proceedings of the IEEE ICRA, pp. 748–753 (2005)
Kang, S.B., Ikeuchi, K.: Determination of motion breakpoints in a task sequence from human hand motion. In: Proceedings of the IEEE ICRA, vol. 1, pp. 551–556 (1994)
Zhao, W., Zhang, J., Min, J., Chai, J.: Robust realtime physics-based motion control for human grasping. ACM Trans. Graph. 32(6), 207:1–207:12 (2013)
Feix, T., Pawlik, R., Schmiedmayer, H.B., Romero, J., Kragic, D.: A comprehensive grasp taxonomy. In: Robotics, Science and Systems: Workshop on Understanding the Human Hand for Advancing Robotic Manipulation (2009)
Feix, T., Romero, J., Schmiedmayer, H.B., Dollar, A.M., Kragic, D.: The grasp taxonomy of human grasp types. IEEE Trans. HMS 46(1), 66–77 (2016)
Krüger, B., Tautges, J., Weber, A., Zinke, A.: Fast local and global similarity searches in large motion capture databases. In: Proceedings of the ACM SCA, pp. 1–10 (2010)
Acknowledgement
We would like to thank Fraunhofer IAO for providing us with the CyberGlove used to record the motion data. We also thank the authors of [6] for providing source code of their method for comparison.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Stollenwerk, K., Vögele, A., Krüger, B., Hinkenjann, A., Klein, R. (2016). Automatic Temporal Segmentation of Articulated Hand Motion. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9787. Springer, Cham. https://doi.org/10.1007/978-3-319-42108-7_33
Download citation
DOI: https://doi.org/10.1007/978-3-319-42108-7_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42107-0
Online ISBN: 978-3-319-42108-7
eBook Packages: Computer ScienceComputer Science (R0)