[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Automatic Temporal Segmentation of Articulated Hand Motion

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2016 (ICCSA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9787))

Included in the following conference series:

Abstract

This paper introduces a novel and efficient segmentation method designed for articulated hand motion. The method is based on a graph representation of temporal structures in human hand-object interaction. Along with the method for temporal segmentation we provide an extensive new database of hand motions. The experiments performed on this dataset show that our method is capable of a fully automatic hand motion segmentation which largely coincides with human user annotations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jörg, S., Hodgins, J., O’Sullivan, C.: The perception of finger motions. In: Proceedings of the APGV, pp. 129–133 (2010)

    Google Scholar 

  2. Jörg, S., Hodgins, J.K., Safonova, A.: Data-driven finger motion synthesis for gesturing characters. ACM Trans. Graph. 31(6), 189:1–189:7 (2012)

    Article  Google Scholar 

  3. Zhao, W., Chai, J., Xu, Y.Q.: Combining marker-based mocap and RGB-D camera for acquiring high-fidelity hand motion data. In: Proceedings of the ACM SCA, pp. 33–42 (2012)

    Google Scholar 

  4. Tognetti, A., Carbonaro, N., Zupone, G., Rossi, D.D.: Characterization of a novel data glove based on textile integrated sensors. In: IEEE EMBS, pp. 2510–2513 (2006)

    Google Scholar 

  5. Dipietro, L., Sabatini, A.M., Dario, P.: A survey of glove-based systems and their applications. IEEE Trans. SMC-C 38(4), 461–482 (2008)

    Google Scholar 

  6. Vögele, A., Krüger, B., Klein, R.: Efficient unsupervised temporal segmentation of human motion. In: Proceedings of the ACM SCA (2014)

    Google Scholar 

  7. Zhou, F., De la Torre, F., Hodgins, J.K.: Hierarchical aligned cluster analysis for temporal clustering of human motion. IEEE Trans. PAMI 35, 582–596 (2013)

    Article  Google Scholar 

  8. Wheatland, N., Wang, Y., Song, H., Neff, M., Zordan, V., Jörg, S.: State of the art in hand and finger modeling and animation. Comput. Graph. Forum 34(2), 735–760 (2015)

    Article  Google Scholar 

  9. Arkenbout, E.A., de Winter, J.C.F., Breedveld, P.: Robust hand motion tracking through data fusion of 5DT data glove and Nimble VR kinect camera measurements. Sensors 15(12), 31644–31671 (2015)

    Article  Google Scholar 

  10. Ju, Z., Liu, H.: Human hand motion analysis with multisensory information. IEEE/ASME Trans. Mechatron. 19(2), 456–466 (2014)

    Article  Google Scholar 

  11. CMU: Carnegie Mellon University Graphics Lab: Motion Capture Database (2013)

    Google Scholar 

  12. Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., Weber, A.: Documentation Mocap database HDM05. Technical report CG-2007-2, Universität Bonn (2007)

    Google Scholar 

  13. Goldfeder, C., Ciocarlie, M.T., Dang, H., Allen, P.K.: The columbia grasp database. In: IEEE ICRA, pp. 1710–1716 (2009)

    Google Scholar 

  14. Feix, T., Romero, J., Ek, C.H., Schmiedmayer, H.B., Kragic, D.: A metric for comparing the anthropomorphic motion capability of artificial hands. IEEE Trans. Robot. 29(1), 82–93 (2013)

    Article  Google Scholar 

  15. Atzori, M., Gijsberts, A., Heynen, S., Hager, A.G.M., Deriaz, O., van der Smagt, P., Castellini, C., Caputo, B., Müller, H.: Building the ninapro database: a resource for the biorobotics community. In: Proceedings of the IEEE/RAS-EMBS BioRob, pp. 1258–1265 (2012)

    Google Scholar 

  16. Beaun, P., Coros, S., van de Panne, M., Poulin, P.: Motion-motif graphs. In: Proceedings of the ACM SCA, pp. 117–126 (2008)

    Google Scholar 

  17. Zhou, F., la Torre, F.D., Hodgins, J.K.: Aligned cluster analysis for temporal segmentation of human motion. In: Proceedings of the IEEE CAFGR (2008)

    Google Scholar 

  18. Min, J., Chai, J.: Motion graphs++: a compact generative model for semantic motion analysis and synthesis. ACM Trans. Graph. 31(6), 153:1–153:12 (2012)

    Article  Google Scholar 

  19. Krüger, B., Vögele, A., Willig, T., Yao, A., Klein, R., Weber, A.: Efficient unsupervised temporal segmentation of motion data. CoRR abs/1510.06595 (2015)

    Google Scholar 

  20. Levine, S., Theobalt, C., Koltun, V.: Real-time prosody-driven synthesis of body language. ACM Trans. Graph. 28(5), 172:1–172:10 (2009)

    Article  Google Scholar 

  21. Mousas, C., Anagnostopoulos, C.N., Newbury, P.: Finger motion estimation and synthesis for gesturing characters. In: Proceedings of the SCCG, pp. 97–104 (2015)

    Google Scholar 

  22. Ekvall, S., Kragic, D.: Grasp recognition for programming by demonstration. In: Proceedings of the IEEE ICRA, pp. 748–753 (2005)

    Google Scholar 

  23. Kang, S.B., Ikeuchi, K.: Determination of motion breakpoints in a task sequence from human hand motion. In: Proceedings of the IEEE ICRA, vol. 1, pp. 551–556 (1994)

    Google Scholar 

  24. Zhao, W., Zhang, J., Min, J., Chai, J.: Robust realtime physics-based motion control for human grasping. ACM Trans. Graph. 32(6), 207:1–207:12 (2013)

    Article  Google Scholar 

  25. Feix, T., Pawlik, R., Schmiedmayer, H.B., Romero, J., Kragic, D.: A comprehensive grasp taxonomy. In: Robotics, Science and Systems: Workshop on Understanding the Human Hand for Advancing Robotic Manipulation (2009)

    Google Scholar 

  26. Feix, T., Romero, J., Schmiedmayer, H.B., Dollar, A.M., Kragic, D.: The grasp taxonomy of human grasp types. IEEE Trans. HMS 46(1), 66–77 (2016)

    Google Scholar 

  27. Krüger, B., Tautges, J., Weber, A., Zinke, A.: Fast local and global similarity searches in large motion capture databases. In: Proceedings of the ACM SCA, pp. 1–10 (2010)

    Google Scholar 

Download references

Acknowledgement

We would like to thank Fraunhofer IAO for providing us with the CyberGlove used to record the motion data. We also thank the authors of [6] for providing source code of their method for comparison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Stollenwerk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Stollenwerk, K., Vögele, A., Krüger, B., Hinkenjann, A., Klein, R. (2016). Automatic Temporal Segmentation of Articulated Hand Motion. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9787. Springer, Cham. https://doi.org/10.1007/978-3-319-42108-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42108-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42107-0

  • Online ISBN: 978-3-319-42108-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics