[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Understanding Human Mobility with Big Data

  • Chapter
  • First Online:
Solving Large Scale Learning Tasks. Challenges and Algorithms

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9580))

Abstract

The paper illustrates basic methods of mobility data mining, designed to extract from the big mobility data the patterns of collective movement behavior, i.e., discover the subgroups of travelers characterized by a common purpose, profiles of individual movement activity, i.e., characterize the routine mobility of each traveler. We illustrate a number of concrete case studies where mobility data mining is put at work to create powerful analytical services for policy makers, businesses, public administrations, and individual citizens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An high resolution version of the graphics is available online at http://kdd.isti.cnr.it/uma.

References

  1. Furletti, B., Gabrielli, L., Renso, C., Rinzivillo, S.: Identifying users profiles from mobile calls habits. In: Proceedings of the ACM SIGKDD International Workshop on Urban Computing, UrbComp 2012, pp. 17–24. ACM, New York (2012)

    Google Scholar 

  2. Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Renso, C., Rinzivillo, S., Trasarti, R.: Unveiling the complexity of human mobility by querying and mining massive trajectory data. VLDB J. 20(5), 695–719 (2011)

    Article  Google Scholar 

  3. Giannotti, F., Pedreschi, D. (eds.): Mobility, Data Mining and Privacy - Geographic Knowledge Discovery. Springer, Heidelberg (2008)

    Google Scholar 

  4. Nanni, M., Trasarti, R., Furletti, B., Gabrielli, L., Mede, P.V.D., Bruijn, J.D., de Romph, E., Bruil, G.: MP4-A project: mobility planning for Africa. In: In D4D Challenge @ 3rd Conference on the Analysis of Mobile Phone datasets (NetMob 2013), Cambridge, USA (2013)

    Google Scholar 

  5. Pappalardo, L., Rinzivillo, S., Qu, Z., Pedreschi, D., Giannotti, F.: Understanding the patterns of car travel. Eur. Phys. J. Spec. Top. 215(1), 61–73 (2013)

    Article  Google Scholar 

  6. Rinzivillo, S., Mainardi, S., Pezzoni, F., Coscia, M., Pedreschi, D., Giannotti, F.: Discovering the geographical borders of human mobility. KI - Künstliche Intelligenz 26(3), 253–260 (2012)

    Article  Google Scholar 

  7. Trasarti, R., Pinelli, F., Nanni, M., Giannotti, F.: Mining mobility user profiles for car pooling. In: Apté, C., Ghosh, J., Smyth, P. (eds.) Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011, pp. 1190–1198. ACM (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Rinzivillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giannotti, F., Gabrielli, L., Pedreschi, D., Rinzivillo, S. (2016). Understanding Human Mobility with Big Data. In: Michaelis, S., Piatkowski, N., Stolpe, M. (eds) Solving Large Scale Learning Tasks. Challenges and Algorithms. Lecture Notes in Computer Science(), vol 9580. Springer, Cham. https://doi.org/10.1007/978-3-319-41706-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41706-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41705-9

  • Online ISBN: 978-3-319-41706-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics