[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Automatic Optic Disc and Fovea Detection in Retinal Images Using Super-Elliptical Convergence Index Filters

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9730))

Included in the following conference series:

Abstract

This paper presents an automatic optic disc (OD) and fovea detection technique using an innovative super-elliptical filter (SEF). This filter is suitable for the detection of semi-elliptical convex shapes and as such it performs well for the OD localization. Furthermore, we introduce a setup for the simultaneous localization of the OD and fovea, in which the detection result of one landmark facilitates the detection of the other one. The evaluation is performed on 1200 images of the MESSIDOR dataset containing both normal and pathological cases of diabetic retinopathy (DR) and macular edema (ME). The proposed approach achieves success rates of 99.75 % and 98.87 % for the OD and fovea detection, respectively and outperforms or equals all known similar methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 59.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 74.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. MESSIDOR: Methods for Evaluating Segmentation and Indexing techniques Dedicated to Retinal Ophthalmology (2004). http://messidor.crihan.fr

  2. Expert system for early automated detection of DR by analysis of digital retinal images project website (2012). http://www.uhu.es/retinopathy/muestras2.php

  3. Aquino, A.: Establishing the macular grading grid by means of fovea centre detection using anatomical-based and visual-based features. Comput. Biol. Med. 55, 61–73 (2014)

    Article  Google Scholar 

  4. Aquino, A., Gegundez, M.E., Marin, D.: Automated optic disc detection in retinal images of patients with diabetic retinopathy and risk of macular edema. Int. J. Biol. Life Sci. 8(2), 87–92 (2012)

    Google Scholar 

  5. Bekkers, E., Duits, R., Romeny, B.H.: Optic nerve head detection via group correlations in multi-orientation transforms. In: Campilho, A., Kamel, M. (eds.) ICIAR 2014, Part II. LNCS, vol. 8815, pp. 293–302. Springer, Heidelberg (2014)

    Google Scholar 

  6. Dashtbozorg, B., Mendonça, A.M., Campilho, A.: Optic disc segmentation using the sliding band filter. Comput. Biol. Med. 56, 1–12 (2015)

    Article  Google Scholar 

  7. Foracchia, M., Grisan, E., Ruggeri, A.: Luminosity and contrast normalization in retinal images. Med. Image Anal. 9(3), 179–190 (2005)

    Article  Google Scholar 

  8. Gegundez-Arias, M.E., Marin, D., Bravo, J.M., Suero, A.: Locating the fovea center position in digital fundus images using thresholding and feature extraction techniques. Comput. Med. Imaging Graph. 37(5), 386–393 (2013)

    Article  Google Scholar 

  9. Giachetti, A., Ballerini, L., Trucco, E., Wilson, P.J.: The use of radial symmetry to localize retinal landmarks. Comput. Med. Imaging Graph. 37(5), 369–376 (2013)

    Article  Google Scholar 

  10. Kao, E.F., Lin, P.C., Chou, M.C., Jaw, T.S., Liu, G.C.: Automated detection of fovea in fundus images based on vessel-free zone and adaptive Gaussian template. Comput. Methods Prog. Biomed. 117(2), 92–103 (2014)

    Article  Google Scholar 

  11. Knudtson, M.D., Lee, K.E., Hubbard, L.D., Wong, T.Y., Klein, R., Klein, B.E.: Revised formulas for summarizing retinal vessel diameters. Curr. Eye Res. 27(3), 143–149 (2003)

    Article  Google Scholar 

  12. Kobatake, H., Hashimoto, S.: Convergence index filter for vector fields. IEEE Trans. Image Process. 8(8), 1029–1038 (1999)

    Article  Google Scholar 

  13. Lu, S.: Accurate and efficient optic disc detection and segmentation by a circular transformation. IEEE Trans. Med. Imaging 30(12), 2126–2133 (2011)

    Article  Google Scholar 

  14. Marin, D., Gegundez-Arias, M.E., Suero, A., Bravo, J.M.: Obtaining optic disc center and pixel region by automatic thresholding methods on morphologically processed fundus images. Comput. Methods Prog. Biomed. 118(2), 173–185 (2015)

    Article  Google Scholar 

  15. Mendonça, A.M., Sousa, A., Mendonça, L., Campilho, A.: Automatic localization of the optic disc by combining vascular and intensity information. Comput. Med. Imaging Graph. 37(5), 409–417 (2013)

    Article  Google Scholar 

  16. Niemeijer, M., Abràmoff, M.D., Van Ginneken, B.: Fast detection of the optic disc and fovea in color fundus photographs. Med. Image Anal. 13(6), 859–870 (2009)

    Article  Google Scholar 

  17. Pereira, C.S., Fernandes, H., Mendonça, A.M., Campilho, A.C.: Detection of lung nodule candidates in chest radiographs. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 170–177. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Quigley, H.A., Brown, A.E., Morrison, J.D., Drance, S.M.: The size and shape of the optic disc in normal human eyes. Arch. Ophthalmol. 108(1), 51–57 (1990)

    Article  Google Scholar 

  19. Wei, J., Hagihara, Y., Kobatake, H.: Detection of cancerous tumors on chest x-ray images-candidate detection filter and its evaluation. In: IEEE International Conference on Image Processing, vol. 3, pp. 397–401 (1999)

    Google Scholar 

  20. Williams, T., Wilkinson, J.: Position of the fovea centralis with respect to the optic nerve head. Optom. Vis. Sci. 69(5), 369–377 (1992)

    Article  Google Scholar 

  21. Yu, H., Barriga, S., Agurto, C., Echegaray, S., Pattichis, M., Zamora, G., Bauman, W., Soliz, P.: Fast localization of optic disc and fovea in retinal images for eye disease screening. In: SPIE Medical Imaging, p. 796317. International Society for Optics and Photonics (2011)

    Google Scholar 

  22. Yu, H., Barriga, E.S., Agurto, C., Echegaray, S., Pattichis, M.S., Bauman, W., Soliz, P.: Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets. IEEE Trans. Inf. Technol. Biomed. 16(4), 644–657 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The work is part of the Hé Programme of Innovation Cooperation, which is financed by the Netherlands Organization for Scientific Research (NWO), dossier No. 629.001.003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behdad Dashtbozorg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dashtbozorg, B., Zhang, J., Huang, F., ter Haar Romeny, B.M. (2016). Automatic Optic Disc and Fovea Detection in Retinal Images Using Super-Elliptical Convergence Index Filters. In: Campilho, A., Karray, F. (eds) Image Analysis and Recognition. ICIAR 2016. Lecture Notes in Computer Science(), vol 9730. Springer, Cham. https://doi.org/10.1007/978-3-319-41501-7_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41501-7_78

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41500-0

  • Online ISBN: 978-3-319-41501-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics