Abstract
This paper presents an automatic optic disc (OD) and fovea detection technique using an innovative super-elliptical filter (SEF). This filter is suitable for the detection of semi-elliptical convex shapes and as such it performs well for the OD localization. Furthermore, we introduce a setup for the simultaneous localization of the OD and fovea, in which the detection result of one landmark facilitates the detection of the other one. The evaluation is performed on 1200 images of the MESSIDOR dataset containing both normal and pathological cases of diabetic retinopathy (DR) and macular edema (ME). The proposed approach achieves success rates of 99.75 % and 98.87 % for the OD and fovea detection, respectively and outperforms or equals all known similar methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
MESSIDOR: Methods for Evaluating Segmentation and Indexing techniques Dedicated to Retinal Ophthalmology (2004). http://messidor.crihan.fr
Expert system for early automated detection of DR by analysis of digital retinal images project website (2012). http://www.uhu.es/retinopathy/muestras2.php
Aquino, A.: Establishing the macular grading grid by means of fovea centre detection using anatomical-based and visual-based features. Comput. Biol. Med. 55, 61–73 (2014)
Aquino, A., Gegundez, M.E., Marin, D.: Automated optic disc detection in retinal images of patients with diabetic retinopathy and risk of macular edema. Int. J. Biol. Life Sci. 8(2), 87–92 (2012)
Bekkers, E., Duits, R., Romeny, B.H.: Optic nerve head detection via group correlations in multi-orientation transforms. In: Campilho, A., Kamel, M. (eds.) ICIAR 2014, Part II. LNCS, vol. 8815, pp. 293–302. Springer, Heidelberg (2014)
Dashtbozorg, B., Mendonça, A.M., Campilho, A.: Optic disc segmentation using the sliding band filter. Comput. Biol. Med. 56, 1–12 (2015)
Foracchia, M., Grisan, E., Ruggeri, A.: Luminosity and contrast normalization in retinal images. Med. Image Anal. 9(3), 179–190 (2005)
Gegundez-Arias, M.E., Marin, D., Bravo, J.M., Suero, A.: Locating the fovea center position in digital fundus images using thresholding and feature extraction techniques. Comput. Med. Imaging Graph. 37(5), 386–393 (2013)
Giachetti, A., Ballerini, L., Trucco, E., Wilson, P.J.: The use of radial symmetry to localize retinal landmarks. Comput. Med. Imaging Graph. 37(5), 369–376 (2013)
Kao, E.F., Lin, P.C., Chou, M.C., Jaw, T.S., Liu, G.C.: Automated detection of fovea in fundus images based on vessel-free zone and adaptive Gaussian template. Comput. Methods Prog. Biomed. 117(2), 92–103 (2014)
Knudtson, M.D., Lee, K.E., Hubbard, L.D., Wong, T.Y., Klein, R., Klein, B.E.: Revised formulas for summarizing retinal vessel diameters. Curr. Eye Res. 27(3), 143–149 (2003)
Kobatake, H., Hashimoto, S.: Convergence index filter for vector fields. IEEE Trans. Image Process. 8(8), 1029–1038 (1999)
Lu, S.: Accurate and efficient optic disc detection and segmentation by a circular transformation. IEEE Trans. Med. Imaging 30(12), 2126–2133 (2011)
Marin, D., Gegundez-Arias, M.E., Suero, A., Bravo, J.M.: Obtaining optic disc center and pixel region by automatic thresholding methods on morphologically processed fundus images. Comput. Methods Prog. Biomed. 118(2), 173–185 (2015)
Mendonça, A.M., Sousa, A., Mendonça, L., Campilho, A.: Automatic localization of the optic disc by combining vascular and intensity information. Comput. Med. Imaging Graph. 37(5), 409–417 (2013)
Niemeijer, M., Abràmoff, M.D., Van Ginneken, B.: Fast detection of the optic disc and fovea in color fundus photographs. Med. Image Anal. 13(6), 859–870 (2009)
Pereira, C.S., Fernandes, H., Mendonça, A.M., Campilho, A.C.: Detection of lung nodule candidates in chest radiographs. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 170–177. Springer, Heidelberg (2007)
Quigley, H.A., Brown, A.E., Morrison, J.D., Drance, S.M.: The size and shape of the optic disc in normal human eyes. Arch. Ophthalmol. 108(1), 51–57 (1990)
Wei, J., Hagihara, Y., Kobatake, H.: Detection of cancerous tumors on chest x-ray images-candidate detection filter and its evaluation. In: IEEE International Conference on Image Processing, vol. 3, pp. 397–401 (1999)
Williams, T., Wilkinson, J.: Position of the fovea centralis with respect to the optic nerve head. Optom. Vis. Sci. 69(5), 369–377 (1992)
Yu, H., Barriga, S., Agurto, C., Echegaray, S., Pattichis, M., Zamora, G., Bauman, W., Soliz, P.: Fast localization of optic disc and fovea in retinal images for eye disease screening. In: SPIE Medical Imaging, p. 796317. International Society for Optics and Photonics (2011)
Yu, H., Barriga, E.S., Agurto, C., Echegaray, S., Pattichis, M.S., Bauman, W., Soliz, P.: Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets. IEEE Trans. Inf. Technol. Biomed. 16(4), 644–657 (2012)
Acknowledgments
The work is part of the Hé Programme of Innovation Cooperation, which is financed by the Netherlands Organization for Scientific Research (NWO), dossier No. 629.001.003.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Dashtbozorg, B., Zhang, J., Huang, F., ter Haar Romeny, B.M. (2016). Automatic Optic Disc and Fovea Detection in Retinal Images Using Super-Elliptical Convergence Index Filters. In: Campilho, A., Karray, F. (eds) Image Analysis and Recognition. ICIAR 2016. Lecture Notes in Computer Science(), vol 9730. Springer, Cham. https://doi.org/10.1007/978-3-319-41501-7_78
Download citation
DOI: https://doi.org/10.1007/978-3-319-41501-7_78
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41500-0
Online ISBN: 978-3-319-41501-7
eBook Packages: Computer ScienceComputer Science (R0)