[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Person Profiling Using Image and Facial Attributes Analyses on Unconstrained Images Retrieved from Online Sources

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9730))

Included in the following conference series:

  • 2814 Accesses

Abstract

With the existence and growth of Social Network Services (SNS), they have become focus in data and image processing research and concerning their potential to describe persons based on online available information. In this paper we propose a novel approach for person profiling solely based on images for children and adolescents of age 10+. The application acquires pictures from search engines and SNS and performs image-based analysis focusing on facial attributes. Image analysis results using different image datasets are presented showing that image analytics faces challenges of its application unconstrained datasets, but has the potential to push SNS analytics to a new level of detail in people profiling. The applications aims at improving the target users’ media literacy, raising their awareness for risks and consequences and at encouraging them in dealing responsibly with pictures online.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 59.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 74.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nyris13 (2016). http://www.hv.se/en/nyris13. Accessed Mar 2016

  2. Bekios-Calfa, J., Buenaposada, J.M., Baumela, L.: Revisiting linear discriminant techniques in gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 858–864 (2011)

    Article  Google Scholar 

  3. Bloess, M., Kim, H.N., Rawashdeh, M., El Saddik, A.: Knowing who you are and who you know: harnessing social networks to identify people via mobile devices. In: Li, S., El Saddik, A., Wang, M., Mei, T., Sebe, N., Yan, S., Hong, R., Gurrin, C. (eds.) MMM 2013, Part I. LNCS, vol. 7732, pp. 130–140. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Borgatti, S., Everett, M., Johnson, J.: Analyzing Social Networks. SAGE Publications, Thousand Oaks (2013)

    Google Scholar 

  5. Burt, R.S., Kilduff, M., Tasselli, S.: Social network analysis: foundations and fron-tiers on advantage. Ann. Rev. Psychol. 64, 527–547 (2013)

    Article  Google Scholar 

  6. Catanese, S., De Meo, P., Ferrara, E., Fiumara, G., Provetti, A.: Crawling facebook for social network analysis purposes, pp. 1–7 (2011)

    Google Scholar 

  7. Cheney, J., Klein, B., Jain, A.K., Klare, B.F.: Unconstrained face detection: state of the art baseline and challenges. In: 2015 International Conference on Biometrics (ICB), pp. 229–236. IEEE (2015)

    Google Scholar 

  8. dlib: dlib c++ library - face detection. http://dlib.net/face_detection_ex.cpp.html. Accessed Feb 2016

  9. dlib: dlib c++ library - real-time face pose estimation. http://blog.dlib.net/2014/08/real-time-face-pose-estimation.html. Accessed Feb 2016

  10. Eidinger, E., Enbar, R., Hassner, T.: Age and gender estimation of unltered faces. Trans. Inf. Forensic Secur. 9(12), 2170–2179 (2014)

    Article  Google Scholar 

  11. Ekman, P., Friesen, W.V.: Facial action coding system (1977)

    Google Scholar 

  12. Feret, C.: Facial image database. Image Group, Information Access Division, ITL, National Institute of Standards and Technology (2003)

    Google Scholar 

  13. Friesen, W.V., Ekman, P.: Emfacs-7: Emotional facial action coding system. Unpublished manuscript, University of California at San Francisco, vol. 2, p. 36 (1983)

    Google Scholar 

  14. Fu, Y., Guo, G., Huang, T.S.: Age synthesis and estimation via faces: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 1955–1976 (2010)

    Article  Google Scholar 

  15. Ghorab, M.R., Zhou, D., O’Connor, A., Wade, V.: Personalised Information re-trieval: survey and classiffication. User Model. User Adap. Inter. 23, 381–443 (2012)

    Article  Google Scholar 

  16. Facebook Inc.: Facebook for developers. https://developers.facebook.com/docs/graph-api. Accessed Mar 2016

  17. Google Inc.: Google custom search engine. https://cse.google.com/cse. Accessed Feb 2016

  18. Instagram: Instagram developer documentation. https://www.instagram.com/developer/. Accessed Feb 2016

  19. Irani, D., Webb, S., Li, K., Pu, C.: Large online social footprints an emerging threat. In: International Conference on Computational Science and Engineering, CSE 2009, vol. 3, pp. 271–276. IEEE (2009)

    Google Scholar 

  20. Klare, B.: Spectrally sampled structural subspace features (4sf). Michigan State University Technical report, MSU-CSE-11-16 (2011)

    Google Scholar 

  21. Klontz, J.C., Klare, B.F., Klum, S., Jain, A.K., Burge, M.J.: Open source biometric recognition. In: IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–8. IEEE (2013)

    Google Scholar 

  22. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended cohnkanade dataset (ck+): a complete dataset for action unit and emotion specied expression. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 94–101. IEEE (2010)

    Google Scholar 

  23. Malhotra, A., Totti, L., Meira, W., Kumaraguru, P., Almeida, V.: Studying user footprints in different online social networks. In: Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2012, pp. 1065–1070 (2012)

    Google Scholar 

  24. Mavridis, N., Kazmi, W., Toulis, P.: Friends with faces: how social networks can enhance face recognition and vice versa. In: Abraham, A., Hassanien, A.-E., Snáel, V. (eds.) Computational Social Network Analysis. Computer Communications and Networks. Springer, London (2010)

    Google Scholar 

  25. Microsoft: Bing developer guide. https://www.bing.com/dev. Accessed Mar 2016

  26. Nefian, A.V., Hayes III, M.H.: Hidden markov models for face recognition. Choice 1, 6 (1998)

    Google Scholar 

  27. Ricanek Jr., K., Tesafaye, T.: Morph: A longitudinal image database of normal adult age progression. In: 7th International Conference on Automatic Face and Gesture Recognition, pp. 341–345. IEEE (2006)

    Google Scholar 

  28. Saragih, J.M., Lucey, S., Cohn, J.F.: Face alignment through subspace constrained mean shifts. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1034–1041. IEEE (2009)

    Google Scholar 

  29. Scott, J.: Social Network Analysis. Sage, Thousand Oaks (2012)

    Google Scholar 

  30. Twitter: Rest apis twitter developers. https://dev.twitter.com/rest/public. Accessed Mar 2016

  31. Viola, P., Jones, M.J.: Robust real time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  32. Walecki, R., Rudovic, O., Pavlovic, V., Pantic, M.: Variable state latent conditional random fields for facial expression recognition and action unit detection. In: 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), 2015, vol. 1, pp. 1–8. IEEE (2015)

    Google Scholar 

Download references

Acknowledgments

This research was partially funded by the Austrian Federal Ministry for Science, Research and Economy as part of the Sparkling Science project “The Profiler” (Grant NO. SPA 05/089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Wetzinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wetzinger, E., Atanasov, M., Kampel, M. (2016). Person Profiling Using Image and Facial Attributes Analyses on Unconstrained Images Retrieved from Online Sources. In: Campilho, A., Karray, F. (eds) Image Analysis and Recognition. ICIAR 2016. Lecture Notes in Computer Science(), vol 9730. Springer, Cham. https://doi.org/10.1007/978-3-319-41501-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41501-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41500-0

  • Online ISBN: 978-3-319-41501-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics