Abstract
The Deformable Spatial Pyramid (DSP) matching method is popular for dense matching of images with different scenes but sharing similar semantic content, which achieves high matching accuracy. However, the warped image generated by DSP is not smooth, which mainly results from the noisy flow field by DSP. We observed the flow field could be decomposed into a low-rank term and a sparse term. Meanwhile, Robust Principle Component Analysis (RPCA) is capable of recovering the low-rank component from an observation with sparse noises. So, in this paper we propose to use RPCA to deal with the non-smoothness in DSP by recovering the low-rank term from the flow field. Experiments on VGG and LMO datasets verify that our approach obtains smoother warped image and gains higher matching accuracy than the DSP.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barnes, C., Shechtman, E., Goldman, D.B., Finkelstein, A.: The generalized patchmatch correspondence algorithm. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 29–43. Springer, Heidelberg (2010)
HaCohen, Y., Shechtman, E., Goldman, D.B., Lischinski, D.: Non-rigid dense correspondence with applications for image enhancement. ACM SIGGRAPH 30(4), 70:1–70:9 (2011)
Liu, C., Yuen, J., Torralba, A.: Nonparametric scene parsing via label transfer. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 33, 2368–2382 (2011)
Karsch, K., Liu, C., Kang, S.B.: Depth extraction from video using non-parametric sampling. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 775–788. Springer, Heidelberg (2012)
Kim, J., Liu, C., Sha, F., Grauman, K.: Deformable spatial pyramid matching for fast dense correspondences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2307–2314 (2013)
Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. (ICCV) 92(1), 1–31 (2007)
Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3), 11:1–11:30 (2011)
Liu, C., Yuen, J., Torralba, A.: Sift flow: dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 33(5), 978–994 (2011)
Hassner, T., Mayzels, V., Zelnik-Manor, L.: On sifts and their scales. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1522–1528 (2012)
Qiu, W., Wang, X., Bai, X., Yuille, A.L., Tu, Z.: Scale-space SIFT flow. In: Applications of Computer Vision (WACV), pp. 1112–1119 (2014)
Tau, M., Hassner, T.: Dense correspondences across scenes and scales. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 38(5), 875–888 (2016)
Hsu, K.J., Lin, Y.Y., Chuang, Y.Y.: Robust image alignment with multiple feature descriptors and matching-guided neighborhoods. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1921–1930 (2015)
Hur, J., Lim, H., Park, C., Ahn, S.C.: Generalized deformable spatial pyramid: geometry-preserving dense correspondence estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1392–1400 (2015)
Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)
Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theor. 52(2), 489–509 (2006)
Ganesh, A., Wright, J., Li, X., Candes, E.J., Ma, Y.: Dense error correction for low-rank matrixes via principal component pursuit. In: Information Theory Proceedings (ISIT), pp. 1513–1517 (2010)
Liang, X., Ren, X., Zhang, Z., Ma, Y.: Repairing sparse low-rank texture. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 482–495. Springer, Heidelberg (2012)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 27(10), 1615–1630 (2005)
Acknowledgement
This work is supported in part by National Natural Science Foundation of China under Grant No. 61175014, and the Fundamental Research Funds for the Central Universities of China.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Shi, F., Zhang, Y. (2016). Improved DSP Matching with RPCA for Dense Correspondences. In: Campilho, A., Karray, F. (eds) Image Analysis and Recognition. ICIAR 2016. Lecture Notes in Computer Science(), vol 9730. Springer, Cham. https://doi.org/10.1007/978-3-319-41501-7_43
Download citation
DOI: https://doi.org/10.1007/978-3-319-41501-7_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41500-0
Online ISBN: 978-3-319-41501-7
eBook Packages: Computer ScienceComputer Science (R0)