[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multi-graph Based Salient Object Detection

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9730))

Included in the following conference series:

  • 2852 Accesses

Abstract

We propose a multi-layer graph based approach for salient object detection in natural images. Starting from a set of multi-scale image decomposition using superpixels, we propose an objective function optimized on a multi-layer graph structure to diffuse saliency from image borders to salient objects. After isolating the object kernel, we enhance the accuracy of our saliency maps through an objectness-like based refinement approach. Beside its simplicity, our algorithm yields very accurate salient objects with clear boundaries. Experiments have shown that our approach outperforms several recent methods dealing with salient object detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 59.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 74.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: IEEE CVPR, pp. 1597–1604 (2009)

    Google Scholar 

  2. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Sösstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE TPAMI 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  3. Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. IEEE TPAMI 34(11), 2189–2202 (2012)

    Article  Google Scholar 

  4. Gopalakrishnan, V., Hu, Y., Rajan, D.: Random walks on graphs for salient object detection in images. IEEE TIP 19(12), 3232–3242 (2010)

    MathSciNet  Google Scholar 

  5. Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.-H.: Saliency detection via absorbing Markov chain. In: IEEE ICCV, pp. 1665–1672 (2013)

    Google Scholar 

  6. Kim, J., Han, D., Tai, Y.W., Kim, J.: Salient region detection via high-dimensional color transform and local spatial support. IEEE TIP 25(1), 9–23 (2016)

    MathSciNet  Google Scholar 

  7. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.: Learning to detect a salient object. IEEE TPAMI 33(2), 353–367 (2011)

    Article  Google Scholar 

  8. Liu, Z., Zou, W., Le Meur, O.: Saliency tree: a novel saliency detection framework. IEEE TIP 23(5), 1937–1952 (2014)

    MathSciNet  Google Scholar 

  9. Seo, H.J., Milanfar, P.: Static and space-time visual saliency detection by self-resemblance. In: IEEE CVPR Workshops, vol. 9(12), pp. 45–52 (2009)

    Google Scholar 

  10. Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: IEEE CVPR, pp. 1155–1162 (2013)

    Google Scholar 

  11. Yang, C., Zhang, L., Lu, H., Ruan, X.: Saliency detection via graph-based manifold ranking. In: IEEE CVPR, pp. 3166–3173 (2013)

    Google Scholar 

  12. Zhang, L., Gu, Z., Li, H.: SDSP: a novel saliency detection method by combining simple priors. In: IEEE ICIP, pp. 171–175 (2013)

    Google Scholar 

  13. Zhu, L., Klein, D.A., Frintrop, S., Cao, Z., Cremers, A.B.: A multi-size superpixel approach for salient object detection based on multivariate normal distribution estimation. IEEE TIP 23(12), 5094–5107 (2014)

    MathSciNet  Google Scholar 

  14. Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: IEEE CVPR, pp. 2814–2821 (2014)

    Google Scholar 

  15. Zhou, D., Bousquet, O., Lal, T., Weston, J., Scholkopf, B.: Learning with local and global consistency. NIPS (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohand Said Allili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Filali, I., Allili, M.S., Benblidia, N. (2016). Multi-graph Based Salient Object Detection. In: Campilho, A., Karray, F. (eds) Image Analysis and Recognition. ICIAR 2016. Lecture Notes in Computer Science(), vol 9730. Springer, Cham. https://doi.org/10.1007/978-3-319-41501-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41501-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41500-0

  • Online ISBN: 978-3-319-41501-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics