[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Algorithmic Aspects of Upper Domination: A Parameterised Perspective

  • Conference paper
  • First Online:
Algorithmic Aspects in Information and Management (AAIM 2016)

Abstract

This paper studies Upper Domination, i.e., the problem of computing the maximum cardinality of a minimal dominating set in a graph, with a focus on parameterised complexity. Our main results include W[1]-hardness for Upper Domination, contrasting FPT membership for the parameterised dual Co-Upper Domination. The study of structural properties also yields some insight into Upper Total Domination. We further consider graphs of bounded degree and derive upper and lower bounds for kernelisation.

C. Bazgan—Institut Universitaire de France.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abu-Khzam, F.N., Bazgan, C., Chopin, M., Fernau, H.: Data reductions and combinatorial bounds for improved approximation algorithms. J. Comput. Syst. Sci. 82(3), 503–520 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Binkele-Raible, D., Brankovic, L., Cygan, M., Fernau, H., Kneis, J., Kratsch, D., Langer, A., Liedloff, M., Pilipczuk, M., Rossmanith, P., Wojtaszczyk, J.O.: Breaking the \(2^n\)-barrier for irredundance: two lines of attack. J. Discrete Algorithms 9, 214–230 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brankovic, L., Fernau, H.: A novel parameterised approximation algorithm for minimum vertex cover. Theor. Comput. Sci. 511, 85–108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cesati, M.: The turing way to parameterized complexity. J. Comput. Syst. Sci. 67, 654–685 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization: lower bounds and upper bounds on kernel size. SIAM J. Comput. 37, 1077–1108 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40–42), 3736–3756 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheston, G.A., Fricke, G., Hedetniemi, S.T., Jacobs, D.P.: On the computational complexity of upper fractional domination. Discrete Appl. Math. 27(3), 195–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cygan, M., Fomin, F., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Switzerland (2015)

    Book  MATH  Google Scholar 

  9. Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness. Congressus Numerantium 87, 161–187 (1992)

    MathSciNet  MATH  Google Scholar 

  10. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, London (2013)

    Book  MATH  Google Scholar 

  11. Downey, R.G., Fellows, M.R., Raman, V.: The complexity of irredundant set parameterized by size. Discrete Appl. Math. 100, 155–167 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fang, Q.: On the computational complexity of upper total domination. Discrete Appl. Math. 136(1), 13–22 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fellows, M.R., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Combinatorial bounds via measure and conquer: bounding minimal dominating sets and applications. ACM Trans. Algorithms 5(1), 1–17 (2008)

    Article  MathSciNet  Google Scholar 

  15. Fomin, F.V., Høie, K.: Pathwidth of cubic graphs and exact algorithms. Inf. Process. Lett. 97, 191–196 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Monographs and Textbooks in Pure and Applied Mathematics, vol. 208. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  17. Hennings, M., Yeo, A.: Total Domination in Graphs. Springer, New York (2013)

    Book  Google Scholar 

  18. Iwata, Y.: A faster algorithm for dominating set analyzed by the potential method. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 41–54. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Kneis, J., Langer, A., Rossmanith, P.: A fine-grained analysis of a simple independent set algorithm. In: Kannan, R., Narayan Kumar, K. (eds.) IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. LIPIcs, FSTTCS 2009, vol. 4, pp. 287–298. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)

    Google Scholar 

  20. Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. J. Comput. Syst. Sci. 67(4), 757–771 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. van Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for dominating set. Discrete Appl. Math. 159(17), 2147–2164 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank our colleagues Serge Gaspers, David Manlove and Daniel Meister for some discussions on (total) upper domination. Part of this research was supported by Deutsche Forschungsgemeinschaft, grant FE 560/6-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Casel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bazgan, C. et al. (2016). Algorithmic Aspects of Upper Domination: A Parameterised Perspective. In: Dondi, R., Fertin, G., Mauri, G. (eds) Algorithmic Aspects in Information and Management. AAIM 2016. Lecture Notes in Computer Science(), vol 9778. Springer, Cham. https://doi.org/10.1007/978-3-319-41168-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41168-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41167-5

  • Online ISBN: 978-3-319-41168-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics