[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Normalized Autocorrelation Length of Random Max \(r\)-Sat Converges in Probability to \((1-1/2^r)/r\)

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2016 (SAT 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9710))

Abstract

In this paper we show that the so-called normalized autocorrelation length of random Max \(r\)-Sat converges in probability to \((1-1/2^r)/r\), where r is the number of literals in a clause. We also show that the correlation between the numbers of clauses satisfied by a random pair of assignments of distance \(d=cn\), \(0 \le c \le 1\), converges in probability to \(((1-c)^r-1/2^r)/(1-1/2^r)\). The former quantity is of interest in the area of landscape analysis as a way to better understand problems and assess their hardness for local search heuristics. In [34], it has been shown that it may be calculated in polynomial time for any instance, and its mean value over all instances was discussed. Our results are based on a study of the variance of the number of clauses satisfied by a random assignment, and the covariance of the numbers of clauses satisfied by a random pair of assignments of an arbitrary distance. As part of this study, closed-form formulas for the expected value and variance of the latter two quantities are provided. Note that all results are relevant to random \(r\)-Sat as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achlioptas, D., Peres, Y.: The threshold for random \(k\)-SAT is \(2^{k}\)log\(2-O(k)\). J. Am. Math. Soc. 17(4), 947–973 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angel, E., Zissimopoulos, V.: Autocorrelation coefficient for the graph bipartitioning problem. Theoret. Comput. Sci. 191(1), 229–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angel, E., Zissimopoulos, V.: On the classification of NP-complete problems in terms of their correlation coefficient. Discrete Appl. Math. 99(1), 261–277 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Angel, E., Zissimopoulos, V.: On the landscape ruggedness of the quadratic assignment problem. Theor. Comput. Sci. 263(1), 159–172 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell. 196, 77–105 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Argelich, J., Li, C.M., Manyá, F., Planes, J.: MaxSat Evaluations. http://www.maxsat.udl.cat/

  7. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties, 2nd edn. Springer-Verlag (2003)

    Google Scholar 

  8. Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability, vol. 185. IOS press, Amsterdam (2009)

    MATH  Google Scholar 

  9. de Boer, P.-T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, R., Santhanam, R.: Improved algorithms for sparse MAX-SAT and MAX-k-CSP. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 33–45. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24318-4_4

    Chapter  Google Scholar 

  11. Chicano, F., Luque, G., Alba, E.: Autocorrelation measures for the quadratic assignment problem. Appl. Math. Lett. 25(4), 698–705 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chicano, F., Luque, G., Alba, E.: Problem understanding through landscape theory. In: Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1055–1062. ACM (2013)

    Google Scholar 

  13. Chvátal, V., Reed, B.: Mick gets some (the odds are on his side) [satisfiability]. In: Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, pp. 620–627. IEEE (1992)

    Google Scholar 

  14. Coja-Oghlan, A.: The asymptotic \(k\)-sat threshold. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pp. 804–813. ACM (2014)

    Google Scholar 

  15. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Ding, J., Sly, A., Sun, N.: Proof of the satisfiability conjecture for large k. arXiv preprint (2014). arXiv:1411.0650

  17. Fontana, W., Stadler, P.F., Bornberg-Bauer, E.G., Griesmacher, T., Hofacker, I.L., Tacker, M., Tarazona, P., Weinberger, E.D., Schuster, P.: RNA folding and combinatory landscapes. Phy. Rev. E 47(3), 2083–2099 (1993)

    Article  Google Scholar 

  18. Friedgut, E., Bourgain, J.: Sharp thresholds of graph properties, and the \(k\)-sat problem. J. Am. Math. Soc. 12(4), 1017–1054 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. García-Pelayo, R., Stadler, P.F.: Correlation length, isotropy and meta-stable states. Physica D Nonlinear Phenom. 107(2), 240–254 (1997)

    Article  Google Scholar 

  20. Goldberg, D.E.: Genetic Algorithms and Walsh Functions: A Gentle Introduction. Clearinghouse for Genetic Algorithms, Department of Mechanical Engineering, University of Alabama (1988)

    Google Scholar 

  21. Heckendorn, R.B., Rana, S., Whitley, D.: Polynomial time summary statistics for a generalization of MAXSAT. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 281–288. Morgan Kaufmann (1999)

    Google Scholar 

  22. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSAT: An efficientWeighted Max-SAT solver. J. Artif. Intell. Res. (JAIR) 31, 1–32 (2008)

    MathSciNet  MATH  Google Scholar 

  23. H. Hoos, H., Smyth, K., Stützle, T.: Search space features underlying the performance of stochastic local search algorithms for MAX-SAT. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 51–60. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  24. Luo, C., Cai, S., Wu, W., Jie, Z., Su, K.-W.: CCLS: An efficient local search algorithm for weighted maximum satisfiability. IEEE Trans. Comput. 64(7), 1830–1843 (2014)

    Article  MathSciNet  Google Scholar 

  25. Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness landscapes and some possible ways forward. Inf. Sci. 241, 148–163 (2013)

    Article  Google Scholar 

  26. Mertens, S., Mézard, M., Zecchina, R.: Threshold values of random \(k\)-SAT from the cavity method. Random Struct. Algorithms 28(3), 340–373 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Merz, P., Freisleben, B.: Fitness landscapes and memetic algorithm design. In: Corne, D., Dorigo, M., Glover, F., Dasgupta, D., Moscato, P., Poli, R., Price, K.V. (eds.) New Ideas in Optimization, pp. 245–260. McGraw-Hill, New York (1999)

    Google Scholar 

  28. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2717–2723. AAAI Press (2014)

    Google Scholar 

  29. Prügel-Bennett, A., Tayarani-Najaran, M.-H.: Maximum satisfiability: Anatomy of the fitness landscape for a hard combinatorial optimization problem. IEEE Trans. Evol. Comput. 16(3), 319–338 (2012)

    Article  Google Scholar 

  30. Qasem, M., Prügel-Bennett, A.: Learning the large-scale structure of the MAX-SAT landscape using populations. IEEE Trans. Evol. Comput. 14(4), 518–529 (2010)

    Article  Google Scholar 

  31. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing. Cliques Coloring Satisfiability Second DIMACS Implement. Chall. 26, 521–532 (1993)

    MATH  Google Scholar 

  32. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability problems. In: Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 440–446. AAAI Press (1992)

    Google Scholar 

  33. Stadler, P.: Fitness landscapes. In: Lässig, M., Valleriani, A. (eds.) Biological Evolution and Statistical Physics, pp. 183–204. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  34. Sutton, A.M., Whitley, L.D., Howe, A.E.: A polynomial time computation of the exact correlation structure of \(k\)-satisfiability landscapes. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 365–372. ACM (2009)

    Google Scholar 

  35. Tompkins, D.A.D., Hoos, H.H.: UBCSAT: An implementation and experimentation environment for SLS algorithms for SAT and MAX-SAT. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 306–320. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  36. Williams, C.P., Hogg, T.: Exploiting the deep structure of constraint problems. Artif. Intell. 70(1), 73–117 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

The work of the second author was partially supported by the Lynne and William Frankel Center for Computer Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yochai Twitto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Berend, D., Twitto, Y. (2016). The Normalized Autocorrelation Length of Random Max \(r\)-Sat Converges in Probability to \((1-1/2^r)/r\) . In: Creignou, N., Le Berre, D. (eds) Theory and Applications of Satisfiability Testing – SAT 2016. SAT 2016. Lecture Notes in Computer Science(), vol 9710. Springer, Cham. https://doi.org/10.1007/978-3-319-40970-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40970-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40969-6

  • Online ISBN: 978-3-319-40970-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics