Abstract
In this paper we show that the so-called normalized autocorrelation length of random Max \(r\)-Sat converges in probability to \((1-1/2^r)/r\), where r is the number of literals in a clause. We also show that the correlation between the numbers of clauses satisfied by a random pair of assignments of distance \(d=cn\), \(0 \le c \le 1\), converges in probability to \(((1-c)^r-1/2^r)/(1-1/2^r)\). The former quantity is of interest in the area of landscape analysis as a way to better understand problems and assess their hardness for local search heuristics. In [34], it has been shown that it may be calculated in polynomial time for any instance, and its mean value over all instances was discussed. Our results are based on a study of the variance of the number of clauses satisfied by a random assignment, and the covariance of the numbers of clauses satisfied by a random pair of assignments of an arbitrary distance. As part of this study, closed-form formulas for the expected value and variance of the latter two quantities are provided. Note that all results are relevant to random \(r\)-Sat as well.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achlioptas, D., Peres, Y.: The threshold for random \(k\)-SAT is \(2^{k}\)log\(2-O(k)\). J. Am. Math. Soc. 17(4), 947–973 (2004)
Angel, E., Zissimopoulos, V.: Autocorrelation coefficient for the graph bipartitioning problem. Theoret. Comput. Sci. 191(1), 229–243 (1998)
Angel, E., Zissimopoulos, V.: On the classification of NP-complete problems in terms of their correlation coefficient. Discrete Appl. Math. 99(1), 261–277 (2000)
Angel, E., Zissimopoulos, V.: On the landscape ruggedness of the quadratic assignment problem. Theor. Comput. Sci. 263(1), 159–172 (2001)
Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell. 196, 77–105 (2013)
Argelich, J., Li, C.M., Manyá, F., Planes, J.: MaxSat Evaluations. http://www.maxsat.udl.cat/
Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties, 2nd edn. Springer-Verlag (2003)
Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability, vol. 185. IOS press, Amsterdam (2009)
de Boer, P.-T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)
Chen, R., Santhanam, R.: Improved algorithms for sparse MAX-SAT and MAX-k-CSP. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 33–45. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24318-4_4
Chicano, F., Luque, G., Alba, E.: Autocorrelation measures for the quadratic assignment problem. Appl. Math. Lett. 25(4), 698–705 (2012)
Chicano, F., Luque, G., Alba, E.: Problem understanding through landscape theory. In: Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1055–1062. ACM (2013)
Chvátal, V., Reed, B.: Mick gets some (the odds are on his side) [satisfiability]. In: Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, pp. 620–627. IEEE (1992)
Coja-Oghlan, A.: The asymptotic \(k\)-sat threshold. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pp. 804–813. ACM (2014)
Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Heidelberg (2011)
Ding, J., Sly, A., Sun, N.: Proof of the satisfiability conjecture for large k. arXiv preprint (2014). arXiv:1411.0650
Fontana, W., Stadler, P.F., Bornberg-Bauer, E.G., Griesmacher, T., Hofacker, I.L., Tacker, M., Tarazona, P., Weinberger, E.D., Schuster, P.: RNA folding and combinatory landscapes. Phy. Rev. E 47(3), 2083–2099 (1993)
Friedgut, E., Bourgain, J.: Sharp thresholds of graph properties, and the \(k\)-sat problem. J. Am. Math. Soc. 12(4), 1017–1054 (1999)
García-Pelayo, R., Stadler, P.F.: Correlation length, isotropy and meta-stable states. Physica D Nonlinear Phenom. 107(2), 240–254 (1997)
Goldberg, D.E.: Genetic Algorithms and Walsh Functions: A Gentle Introduction. Clearinghouse for Genetic Algorithms, Department of Mechanical Engineering, University of Alabama (1988)
Heckendorn, R.B., Rana, S., Whitley, D.: Polynomial time summary statistics for a generalization of MAXSAT. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 281–288. Morgan Kaufmann (1999)
Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSAT: An efficientWeighted Max-SAT solver. J. Artif. Intell. Res. (JAIR) 31, 1–32 (2008)
H. Hoos, H., Smyth, K., Stützle, T.: Search space features underlying the performance of stochastic local search algorithms for MAX-SAT. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 51–60. Springer, Heidelberg (2004)
Luo, C., Cai, S., Wu, W., Jie, Z., Su, K.-W.: CCLS: An efficient local search algorithm for weighted maximum satisfiability. IEEE Trans. Comput. 64(7), 1830–1843 (2014)
Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness landscapes and some possible ways forward. Inf. Sci. 241, 148–163 (2013)
Mertens, S., Mézard, M., Zecchina, R.: Threshold values of random \(k\)-SAT from the cavity method. Random Struct. Algorithms 28(3), 340–373 (2006)
Merz, P., Freisleben, B.: Fitness landscapes and memetic algorithm design. In: Corne, D., Dorigo, M., Glover, F., Dasgupta, D., Moscato, P., Poli, R., Price, K.V. (eds.) New Ideas in Optimization, pp. 245–260. McGraw-Hill, New York (1999)
Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2717–2723. AAAI Press (2014)
Prügel-Bennett, A., Tayarani-Najaran, M.-H.: Maximum satisfiability: Anatomy of the fitness landscape for a hard combinatorial optimization problem. IEEE Trans. Evol. Comput. 16(3), 319–338 (2012)
Qasem, M., Prügel-Bennett, A.: Learning the large-scale structure of the MAX-SAT landscape using populations. IEEE Trans. Evol. Comput. 14(4), 518–529 (2010)
Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing. Cliques Coloring Satisfiability Second DIMACS Implement. Chall. 26, 521–532 (1993)
Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability problems. In: Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 440–446. AAAI Press (1992)
Stadler, P.: Fitness landscapes. In: Lässig, M., Valleriani, A. (eds.) Biological Evolution and Statistical Physics, pp. 183–204. Springer, Heidelberg (2002)
Sutton, A.M., Whitley, L.D., Howe, A.E.: A polynomial time computation of the exact correlation structure of \(k\)-satisfiability landscapes. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 365–372. ACM (2009)
Tompkins, D.A.D., Hoos, H.H.: UBCSAT: An implementation and experimentation environment for SLS algorithms for SAT and MAX-SAT. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 306–320. Springer, Heidelberg (2005)
Williams, C.P., Hogg, T.: Exploiting the deep structure of constraint problems. Artif. Intell. 70(1), 73–117 (1994)
Acknowledgment
The work of the second author was partially supported by the Lynne and William Frankel Center for Computer Science.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Berend, D., Twitto, Y. (2016). The Normalized Autocorrelation Length of Random Max \(r\)-Sat Converges in Probability to \((1-1/2^r)/r\) . In: Creignou, N., Le Berre, D. (eds) Theory and Applications of Satisfiability Testing – SAT 2016. SAT 2016. Lecture Notes in Computer Science(), vol 9710. Springer, Cham. https://doi.org/10.1007/978-3-319-40970-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-40970-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40969-6
Online ISBN: 978-3-319-40970-2
eBook Packages: Computer ScienceComputer Science (R0)