Abstract
Energy-efficiency, high transmission data rates and Quality of Service (QoS) awareness are the major challenges for resource management in the uplink of Visible Light Communication Personal Area Networks (VPANs). This paper investigates the problem of Optical Access Point (OAP) selection and resource allocation in the uplink of VPANs under two different transmission techniques, namely Orthogonal Frequency Division Multiple Access (OFDMA) and Non-Orthogonal Multiple Access (NOMA). Each user is associated with a generic utility function, which represents his perceived satisfaction with respect to the overall resource allocation problem. OAP selection adopts Maximum Gain Selection (MGS) policy, i.e. users select an OAP to connect to based on the highest path gain. A distributed resource allocation problem in VPANs is formulated and solved as an optimization problem. Following this analysis, a decentralized iterative and low-complexity algorithm for determining OAP selection and resource allocation is proposed, while the overall approach’s efficiency is illustrated via modeling and simulation, highlighting and assessing the advantages and drawbacks of each adopted transmission technique, i.e. OFDMA and NOMA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
IEEE Standard 802.15.7, IEEE Standard for Local and Metropolitan Area Networks 15.7: PHY and MAC Standard for Short Range Wireless Optical Communication Using Visible Light. IEEE Std. IEEE Standard 802.15.7
Chen Z., Tsonev, D., Haas, H.: Improving SINR in indoor cellular visible light communication networks. In: IEEE International Conference on Communications (ICC), pp. 3383–3388, June 2014
Dimitrov, S., Haas, H.: Information rate of OFDM-based optical wireless communication systems with nonlinear distortion. J. Lightwave Technol. 31(6), 918–929 (2013)
Saha, N., Mondal, R.K., Jang, Y.M.: Opportunistic channel reuse for a self-organized visible light communication personal area network. In: Fifth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 131–134, July 2013
Bykhovsky, D., Arnon, S.: Multiple access resource allocation in visible light communication systems. J. Lightwave Technol. 32(8), 1594–1600 (2014)
Saha, N., Mondal, R.K., Ifthekhar, M.S., Jang, Y.M.: Dynamic resource allocation for visible light based wireless sensor network. In: International Conference on Information Networking (ICOIN), pp. 75–78, February 2014
Mondal, R.K., Saha, N., Le, N.-T., Jang, Y.M.: SINR-constrained joint scheduling and optimal resource allocation in VLC based WPAN. Wirel. Pers. Commun. 78(4), 1935–1951 (2014)
Ghimire, B., Haas, H.: Self-organising interference coordination in optical wireless networks. EURASIP J. Wirel. Commun. Netw. 1, 2012 (2012)
Kim, W.-C., Bae, C.-S., Jeon, S.-Y., Pyun, S.-Y., Cho, D.-H.: Efficient resource allocation for rapid link recovery and visibility in visible-light local area networks. IEEE Trans. Consum. Electron. 56(2), 524–531 (2010)
Mondal, R.K., Chowdhury, M.Z., Saha, N., Jang, Y.M.: Interference-aware optical resource allocation in visible light communication. In: International Conference on ICT Convergence (ICTC), pp. 155–158, October 2012
Marshoud, H., Kapinas, V.M., Karagiannidis, G.K., Muhaidat, S.: Non-Orthogonal multiple access for visible light communications. IEEE Photonics Technol. Lett. 28(1), 51–54 (2016)
Yin, L., Wu, X., Haas, H.: On the performance of non-orthogonal multiple access in visible light communication. In: IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1354–1359 (2015)
Kahn, J., Barry, J.: Wireless Infrared Communications. Proc. IEEE 85(2), 265–298 (1997)
Lee, J.-W., Mazumdar, R.R., Shroff, N.B.: Joint resource allocation and base-station assignment for the downlink in CDMA networks. IEEE/ACM Trans. Netw. 14(1), 1–14 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Tsiropoulou, E.E., Gialagkolidis, I., Vamvakas, P., Papavassiliou, S. (2016). Resource Allocation in Visible Light Communication Networks: NOMA vs OFDMA Transmission Techniques. In: Mitton, N., Loscri, V., Mouradian, A. (eds) Ad-hoc, Mobile, and Wireless Networks. ADHOC-NOW 2016. Lecture Notes in Computer Science(), vol 9724. Springer, Cham. https://doi.org/10.1007/978-3-319-40509-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-40509-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40508-7
Online ISBN: 978-3-319-40509-4
eBook Packages: Computer ScienceComputer Science (R0)