[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On Interval Dynamic Logic

  • Conference paper
  • First Online:
Formal Methods: Foundations and Applications (SBMF 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10090))

Included in the following conference series:

Abstract

The wide number of languages and programming paradigms, as well as the heterogeneity of ‘programs’ and ‘executions’ require new generalisations of propositional dynamic logic. The dynamisation method, introduced in [20], contributed on this direction with a systematic parametric way to construct Many-valued Dynamic Logics able to handle systems where the uncertainty is a prime concern. The instantiation of this method with the Łukasiewicz arithmetic lattice over [0, 1], that we derive here, supports a general setting to design and to (fuzzy-) reason about systems with uncertainty degrees in their transitions.

For the verification of real systems, however, there are no de facto methods to accommodate exact truth degrees or weights. Instead, the traditional approach within scientific community is to use different kinds of approximation techniques.

Following this line, the current paper presents a framework where the representation values are given by means of intervals. Technically this is achieved by considering an ‘interval version’ of the Kleene algebra based on the [0, 1] Łukasiewicz lattice. We also discuss the ‘intervalisation’ of \(\L \) action lattice (in the lines reported in [28]) and how this class of algebras behaves as an (interval) semantics of many-valued dynamic logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This idea is confirmed in some Representation Theorems of Euclidean continuous functions.

References

  1. Baltag, A., Smets, S.: Quantum logic as a dynamic logic. Synthese 179(2), 285–306 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bedregal, B., Santiago, R.: Some continuity notions for interval functions and representation. Comput. Appl. Math. 32(3), 435–446 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bedregal, B.C., Takahashi, A.: Interval valued versions of t-conorms, fuzzy negations and fuzzy implications. In: 2006 IEEE International Conference on Fuzzy Systems , pp. 1981–1987 (2006)

    Google Scholar 

  4. Bedregal, B.R.C., Santiago, R.H.N.: Interval representations, Łukasiewicz implicators and Smets-Magrez axioms. Inf. Sci. 221, 192–200 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bedregal, B.R.C., Takahashi, A.: The best interval representations of t-norms and automorphisms. Fuzzy Sets Syst. 157(24), 3220–3230 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bou, F., Esteva, F., Godo, L., Rodríguez, R.O.: On the minimum many-valued modal logic over a finite residuated lattice. J. Log. Comput. 21(5), 739–790 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J., Xu, Z., Bedregal, B., Montero, J., Hagras, H., Herrera, F., Baets, B.D.: A historical account of types of fuzzy sets and their relationships. IEEE Trans. Fuzzy Syst. 24(1), 179–194 (2016)

    Article  Google Scholar 

  8. Cignoli, R., d’Ottaviano, I., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic. Springer, Netherlands (1999)

    MATH  Google Scholar 

  9. Conway, J.H.: Regular Algebra and Finite Machines. Printed in GB by William Clowes & Sons Ltd, London (1971)

    MATH  Google Scholar 

  10. Fitting, M.: Many-valued modal logics. Fundam. Inform. 15(3–4), 235–254 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Fitting, M.: Many-valued model logics II. Fundam. Inform. 17(1–2), 55–73 (1992)

    MathSciNet  MATH  Google Scholar 

  12. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  13. Hickey, T., Ju, Q., Van Emden, M.H.: Interval arithmetic: from principles to implementation. J. ACM 48(5), 1038–1068 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hughes, J., Esterline, A.C., Kimiaghalam, B.: Means-end relations and a measure of efficacy. J. Log. Lang. Inf. 15(1–2), 83–108 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, 1st edn. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  16. Kozen, D.: On action algebras (manuscript). In: Logic and Flow of Information, Amsterdam (1991)

    Google Scholar 

  17. Kozen, D.: A probabilistic PDL. J. Comput. Syst. Sci. 30(2), 162–178 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inf. Comput. 110(2), 366–390 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liau, C.-J.: Many-valued dynamic logic for qualitative decision theory. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 294–303. Springer, Heidelberg (1999). doi:10.1007/978-3-540-48061-7_36

    Chapter  Google Scholar 

  20. Madeira, A., Neves, R., Martins, M.A.: An exercise on the generation of many-valued dynamic logics. J. Log. Algebraic Methods Program. 85(5), 1011–1037 (2016)

    Article  MathSciNet  Google Scholar 

  21. Madeira, A., Neves, R., Martins, M.A., Barbosa, L.S.: A dynamic logic for every season. In: Braga, C., Martí-Oliet, N. (eds.) SBMF 2014. LNCS, vol. 8941, pp. 130–145. Springer, Heidelberg (2015). doi:10.1007/978-3-319-15075-8_9

    Google Scholar 

  22. Moore, R.E.: Interval arithmetic and automatic error analysis in digital computing. Ph.D. dissertation, Department of Mathematics, Stanford University, Stanford, CA, USA, November 1962. (Also published as Applied Mathematics and Statistics Laboratories Technical report No. 25)

    Google Scholar 

  23. Moore, R.E., Yang, C.T.: Interval analysis I. Technical document LMSD-285875, Lockheed Missiles and Space Division, Sunnyvale, CA, USA (1959)

    Google Scholar 

  24. Mundici, D.: Advanced Łukasiewicz Calculus and MV-Algebras. Trends in Logic. Springer, Netherlands (2011)

    Book  MATH  Google Scholar 

  25. Platzer, A.: Logical Analysis of Hybrid Systems - Proving Theorems for Complex Dynamics. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  26. Pratt, V.R.: Semantical considerations on floyd-hoare logic. In: 17th Annual Symposium on Foundations of Computer Science, Houston, Texas, USA, 25–27 October 1976, pp. 109–121. IEEE Computer Society (1976)

    Google Scholar 

  27. Pratt, V.: Action logic and pure induction. In: Eijck, J. (ed.) JELIA 1990. LNCS, vol. 478, pp. 97–120. Springer, Heidelberg (1991). doi:10.1007/BFb0018436

    Chapter  Google Scholar 

  28. Santiago, R.H.N., Bedregal, B.R.C., Acióly, B.M.: Formal aspects of correctness and optimality of interval computations. Formal Aspects Comput. 18(2), 231–243 (2006)

    Article  MATH  Google Scholar 

  29. Sunaga, T.: Theory of an interval algebra and its application to numerical analysis [reprint of Res. Assoc. Appl. Geom. Mem. 2, 29–46 (1958)]. Japan J. Ind. Appl. Math. 26(2–3), 125–143 (2009)

    Article  MathSciNet  Google Scholar 

  30. Xu, Y., Ruan, D., Qin, K., Liu, J.: Lattice-Valued Logic: An Alternative Approach to Treat Fuzziness and Incomparability. Studies in Fuzziness and Soft Computing. Springer, Berlin (2012)

    MATH  Google Scholar 

Download references

Acknowledgements

R. Santiago and B. Bedregal are supported by Marie Curie project PIRSES-GA-2012-318986 GetFun funded by EU-FP7 and by the Brazilian National Council for Scientific and Technological Development (CNPq, Portuguese: Conselho Nacional de Desenvolvimento Científico e Tecnológico) under the Projects 304597/2015-5 and 307681/2012-2. This work is also financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 and by National Funds through the Portuguese funding agency, FCT-Fundação para a Ciência e a Tecnologia within project POCI-01-0145-FEDER- 016692. A. Madeira and M. Martins are also supported by the FCT BPD individual grant SFRH/BPD/103004/2014 and UID/MAT/04106/2013 at CIDMA, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel A. Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Santiago, R.H.N., Bedregal, B., Madeira, A., Martins, M.A. (2016). On Interval Dynamic Logic. In: Ribeiro, L., Lecomte, T. (eds) Formal Methods: Foundations and Applications. SBMF 2016. Lecture Notes in Computer Science(), vol 10090. Springer, Cham. https://doi.org/10.1007/978-3-319-49815-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49815-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49814-0

  • Online ISBN: 978-3-319-49815-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics