Abstract
Alcohol abuse is quite common among all people without any age restrictions. The uncontrolled use of alcohol affects both the individual and society. Alcohol addiction leads to a huge increase in crime, suicide, health related problems and financial crisis. Research has shown that certain behavioral changes can be effective towards staying abstained. The analysis of behavioral changes of quitters and those who are at the beginning phase of quitting can be useful for reducing the issues related to alcohol addiction. Most of the conventional approaches are based on surveys and, therefore, expensive in both time and cost. Social media has lend itself as a source of large, diverse and unbiased data for analyzing social behaviors. Reddit is a social media platform where a large number of people communicate with each other. It has many different sub-groups called subreddits categorized based on the subject. We collected more than 40,000 self reported user’s data from a subreddit called ‘/r/stopdrinking’. We divide the data into two groups, short-term with abstinent days less than 30 and long-term abstainers with abstinent days greater than 365 based on badge days at the time of post submission. Common and discriminative topics are extracted from the data using JS-NMF, a shared subspace non-negative matrix factorization method. The validity of the extracted topics are demonstrated through predictive performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbar, S., Mejova, Y., Weber, I.: You tweet what you eat: Studying food consumption through Twitter. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 3197–3206 (2015)
Cunha, T.O., Weber, I., Haddadi, H., Pappa, G.L.: The effect of social feedback in a reddit weight loss community. In: Proceedings of the 6th International Conference on Digital Health Conference, pp. 99–103 (2016)
De Choudhury, M., Kiciman, E., Dredze, M., Coppersmith, G., Kumar, M.: Discovering shifts to suicidal ideation from mental health content in social media. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 2098–2110 (2016)
Ekpenyong, N.S., Aakpege, N.Y.: Alcohol consumption pattern and risky behaviour: a study of university of port harcourt. IOSR J. Humanit. Soc. Sci. (IOSR-JHSS) 19(3), 1 (2014)
Feldman, R., Sanger, J.: The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press, New York (2007)
Gilpin, E.A., Pierce, J.P., Farkas, A.J.: Duration of smoking abstinence and success in quitting. J. Nat. Cancer Inst. 89(8), 572 (1997)
Gupta, S.K., Phung, D., Adams, B., Tran, T., Venkatesh, S.: Nonnegative shared subspace learning and its application to social media retrieval. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1169–1178 (2010)
Gupta, S.K., Phung, D., Adams, B., Venkatesh, S.: Regularized nonnegative shared subspace learning. Data Min. Knowl. Discov. 26(1), 57–97 (2013)
Kelly, J.F., Hoeppner, B., Stout, R.L., Pagano, M.: Determining the relative importance of the mechanisms of behavior change within Alcoholics Anonymous: A multiple mediator analysis. Addiction 107(2), 289–299 (2012)
Magura, S., McKean, J., Kosten, S., Tonigan, J.S.: A novel application of propensity score matching to estimate Alcoholics Anonymous effect on drinking outcomes. Drug Alcohol Depend. 129(1), 54–59 (2013)
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Tamersoy, A., De Choudhury, M., Chau, D.H.: characterizing smoking and drinking abstinence from social media. In: Proceedings of the 26th ACM Conference on Hypertext & Social Media, pp. 139–148 (2015)
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Stat. Soc. Ser. B (Methodological) 58, 267–288 (1996)
Weitzman, E.R.: Poor mental health, depression, and associations with alcohol consumption, harm, and abuse in a national sample of young adults in college. J. Nerv. Mental Dis. 192(4), 269–277 (2004)
Witteman, J., Post, H., Tarvainen, M., de Bruijn, A., Perna, E.D.S.F., Ramaekers, J.G., Wiers, R.W.: Cue reactivity and its relation to craving and relapse in alcohol dependence: A combined laboratory and field study. Psychopharmacology 232(20), 3685–3696 (2015)
Acknowledgment
This work is partially supported by the Telstra-Deakin Centre of Excellence in Big Data and Machine Learning.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Harikumar, H., Nguyen, T., Rana, S., Gupta, S., Kaimal, R., Venkatesh, S. (2016). Extracting Key Challenges in Achieving Sobriety Through Shared Subspace Learning. In: Li, J., Li, X., Wang, S., Li, J., Sheng, Q. (eds) Advanced Data Mining and Applications. ADMA 2016. Lecture Notes in Computer Science(), vol 10086. Springer, Cham. https://doi.org/10.1007/978-3-319-49586-6_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-49586-6_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-49585-9
Online ISBN: 978-3-319-49586-6
eBook Packages: Computer ScienceComputer Science (R0)