[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Extracting Key Challenges in Achieving Sobriety Through Shared Subspace Learning

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10086))

Included in the following conference series:

Abstract

Alcohol abuse is quite common among all people without any age restrictions. The uncontrolled use of alcohol affects both the individual and society. Alcohol addiction leads to a huge increase in crime, suicide, health related problems and financial crisis. Research has shown that certain behavioral changes can be effective towards staying abstained. The analysis of behavioral changes of quitters and those who are at the beginning phase of quitting can be useful for reducing the issues related to alcohol addiction. Most of the conventional approaches are based on surveys and, therefore, expensive in both time and cost. Social media has lend itself as a source of large, diverse and unbiased data for analyzing social behaviors. Reddit is a social media platform where a large number of people communicate with each other. It has many different sub-groups called subreddits categorized based on the subject. We collected more than 40,000 self reported user’s data from a subreddit called ‘/r/stopdrinking’. We divide the data into two groups, short-term with abstinent days less than 30 and long-term abstainers with abstinent days greater than 365 based on badge days at the time of post submission. Common and discriminative topics are extracted from the data using JS-NMF, a shared subspace non-negative matrix factorization method. The validity of the extracted topics are demonstrated through predictive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.cdc.gov/.

  2. 2.

    http://www.cdc.gov/alcohol/fact-sheets/alcohol-use.htm.

References

  1. Abbar, S., Mejova, Y., Weber, I.: You tweet what you eat: Studying food consumption through Twitter. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 3197–3206 (2015)

    Google Scholar 

  2. Cunha, T.O., Weber, I., Haddadi, H., Pappa, G.L.: The effect of social feedback in a reddit weight loss community. In: Proceedings of the 6th International Conference on Digital Health Conference, pp. 99–103 (2016)

    Google Scholar 

  3. De Choudhury, M., Kiciman, E., Dredze, M., Coppersmith, G., Kumar, M.: Discovering shifts to suicidal ideation from mental health content in social media. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 2098–2110 (2016)

    Google Scholar 

  4. Ekpenyong, N.S., Aakpege, N.Y.: Alcohol consumption pattern and risky behaviour: a study of university of port harcourt. IOSR J. Humanit. Soc. Sci. (IOSR-JHSS) 19(3), 1 (2014)

    Google Scholar 

  5. Feldman, R., Sanger, J.: The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press, New York (2007)

    Google Scholar 

  6. Gilpin, E.A., Pierce, J.P., Farkas, A.J.: Duration of smoking abstinence and success in quitting. J. Nat. Cancer Inst. 89(8), 572 (1997)

    Article  Google Scholar 

  7. Gupta, S.K., Phung, D., Adams, B., Tran, T., Venkatesh, S.: Nonnegative shared subspace learning and its application to social media retrieval. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1169–1178 (2010)

    Google Scholar 

  8. Gupta, S.K., Phung, D., Adams, B., Venkatesh, S.: Regularized nonnegative shared subspace learning. Data Min. Knowl. Discov. 26(1), 57–97 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kelly, J.F., Hoeppner, B., Stout, R.L., Pagano, M.: Determining the relative importance of the mechanisms of behavior change within Alcoholics Anonymous: A multiple mediator analysis. Addiction 107(2), 289–299 (2012)

    Article  Google Scholar 

  10. Magura, S., McKean, J., Kosten, S., Tonigan, J.S.: A novel application of propensity score matching to estimate Alcoholics Anonymous effect on drinking outcomes. Drug Alcohol Depend. 129(1), 54–59 (2013)

    Article  Google Scholar 

  11. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Tamersoy, A., De Choudhury, M., Chau, D.H.: characterizing smoking and drinking abstinence from social media. In: Proceedings of the 26th ACM Conference on Hypertext & Social Media, pp. 139–148 (2015)

    Google Scholar 

  13. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Stat. Soc. Ser. B (Methodological) 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Weitzman, E.R.: Poor mental health, depression, and associations with alcohol consumption, harm, and abuse in a national sample of young adults in college. J. Nerv. Mental Dis. 192(4), 269–277 (2004)

    Article  Google Scholar 

  15. Witteman, J., Post, H., Tarvainen, M., de Bruijn, A., Perna, E.D.S.F., Ramaekers, J.G., Wiers, R.W.: Cue reactivity and its relation to craving and relapse in alcohol dependence: A combined laboratory and field study. Psychopharmacology 232(20), 3685–3696 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

This work is partially supported by the Telstra-Deakin Centre of Excellence in Big Data and Machine Learning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haripriya Harikumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Harikumar, H., Nguyen, T., Rana, S., Gupta, S., Kaimal, R., Venkatesh, S. (2016). Extracting Key Challenges in Achieving Sobriety Through Shared Subspace Learning. In: Li, J., Li, X., Wang, S., Li, J., Sheng, Q. (eds) Advanced Data Mining and Applications. ADMA 2016. Lecture Notes in Computer Science(), vol 10086. Springer, Cham. https://doi.org/10.1007/978-3-319-49586-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49586-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49585-9

  • Online ISBN: 978-3-319-49586-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics