Abstract
Until nowadays, the scientific community firmly rejected the Theory of Inheritance of Acquired Characteristics, a theory mostly associated with the name of Jean-Baptiste Lamarck (1774–1829). Though largely dismissed when applied to biological organisms, this theory found its place in a young discipline called Artificial Life. Based on the two models of Darwinian and Lamarckian evolutionary theories built using neural networks and genetic algorithms, this research presents a notion of the potential impact of implementation of Lamarckian knowledge inheritance across disciplines, including biology, computer science and philosophy. There is an evidence that Lamarckian organisms can have wide practical application across several different domains, therefore this type of research should be allowed and encouraged. However, even though Lamarckian evolutionary algorithm already holds major benefits for various disciplines and promises even more, its implementation in Artificial Life needs regulation to avoid malevolent use.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sasaki, T. and Tokoro, M.: Comparison between Lamarckian and Darwinian Evolution on a Model Using Neural Networks and GAs. Knowledge and Information Systems (KAIS): An International Journal, Springer. (2000).
Ross, B. J.: A Lamarckian Evolution Strategy for Genetic Algorithms. In Lance D. Chambers, editor, Practical Handbook of Genetic Algorithms: Complex Coding Systems, Boca Raton, FL: CRC Press, volume III, pp. 1–16. (1999).
Neumann, J. v.: The General and Logical Theory of Automata. Collected Works Volume V: Design of Computers, Theory of Automata and Numerical Analysis. Ed. A.H. Taub. New York: Pergamon, p. 288–326. (1963).
Rumelhart, D. and McClelland, J.: Parallel Distributed Processing. MIT Press, Cambridge, Mass. (1986).
Holland, J. H.: Adaptation in Natural and Artificial Systems. Ann Arbor MI University of Michigan Press (Vol. Ann Arbor). (1975).
Bull, J. J. and Wichman, H. A.: Applied Evolution. Annual Review of Ecology, Evolution, and Systematics, 32, 183–217. (2001).
Sandberg, A. and Bostrom, N.: Whole Brain Emulation: A Roadmap Technical Report. Future of Humanity Institute, Oxford University. (2008).
Sandberg, A.: Ethics of brain emulations. Journal of Experimental & Theoretical Artificial Intelligence, (May), 1–19. (2014).
Lewis, P.R., Platzner, M., Rinner, B., Torresen, J., and Yao, X.: Self-aware Computing Systems. An Engineering Approach. Springer, Natural Computing Series. (2016).
Wang, B.: Ray Kurzweil Clarifies his Vision of Reverse Engineering the Brain and Developing Artificial Intelligence from Principles Gleaned from Brain Science, Next Big Future: Coverage of Disruptive Science and Technology (2010). http://www.nextbigfuture.com/2010/08/ray-kurzweil-clarifies-his-vision-of.html?m=1.
Djurfeldt, M., Lundqvist, M., Johansson, C., Rehn, M., Ekeberg, O., and Lansner, A.: Brain-scale simulation of the neocortex on the IBM Blue Gene/L supercomputer. IBM Journal of Research and Development, 52, 31–41. (2008).
Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., and Rasmussen, D.: A large-scale model of the functioning brain. Science, 338, 1202–1205. (2012).
Markram, H.: The blue brain project. Nature Reviews Neuroscience, 7, 153–160. (2006).
Preissl, R., Wong, T. M., Datta, P., Flickner, M. D., Singh, R., Esser, S. K., Modha, D. S.: Compass: A scalable simulator for an architecture for cognitive computing. Proceedings of Supercomputing 2012, Salt Lake City, November 10 –16, 2012. (2012).
Fraser, A. S.: Monte Carlo analyses of genetic models. Nature 181 (4603): 9–208. (1958).
Rechenberg, I.: Evolutionsstrategie – Optimierung technischer Systeme nach Prinzipien der biologischen Evolution (PhD thesis) (in German). Fromman-Holzboog. (1973).
Koza, J. R.: Genetic Programming. MIT Press. (1992).
Jamshidi, M.: Tools for intelligent control: fuzzy controllers, neural networks and genetic algorithms. Philosophical Transactions of the Royal Society A 361 (1809): 1781–808. (2003).
Huerta, M., Haseltine, F., Liu, Y., Downing, G., and Seto, B.: NIH Working Definition of Bioinformatics and Computational Biology. BISTIC Definition Committee. (2000).
Kumar, D. and Bhatnagar, R.: An approach implements artificial intelligence into human life with new technologies and application. International Journal on Emerging Technologies 1(2). (2010).
Hinton, G. E. and Nowlan, S. J.: How Learning Can Guide Evolution. Complex Systems, 1, 495–502. (1987).
Bedau, M. A.: Leonardo. The Scientific and Philosophical Scope of Artificial Life. MIT Press Vol. 35, No. 4, p. 395–400. (2002).
Grefenstette, J. J., Ramsey, C. L., and Schultz, A. C.: Learning sequential decision rules using simulation models and competition. Machine Learning, 5(4), 355–381. (1990).
Davidor, Y.: Genetic Algorithms and Robotics. World Scientific Series in Robotics and Intelligent Systems: Volume 1. (Weizmann Inst. Sci., Israel). (1991).
Bray, D.: Wetware: A Computer in Every Living Cell. Yale University Press: New Haven, Connecticut. (2011).
Borresen, J. and Lynch, S.: Neuronal computers. Nonlinear Analysis, Theory, Methods and Applications, 71(12). (2009).
Pilpel, Y.: Realizing Lamarckian Evolution. Center for Bits and Atoms. MIT Media Lab, E14–633. (2016).
Moritz, C.: Biology 1B—Evolution Lecture 1. Introduction to Evolution. UC Berkeley. (2010).
Stewart, R. C.: The Journal of Evolutionary Philosophy. The Academy of Evolutionary Metaphysics. (2005).
Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R.-Y., Algire, M. a, … Venter, J. C.: Creation of a bacterial cell controlled by a chemically synthesized genome. Science (New York, N.Y.), 329(5987), 52–56. (2010).
Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., and Olson, A. J.: Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. Journal of Computational Chemistry, 19, 1639–1662. (1998).
Collins, R. J. and Jefferson, D.: Antfarm: Towards Simulated Evolution. In Artificial Life II (pp. 579–601). Retrieved from http://citeseer.ist.psu.edu/collins91antfarm.html. (1992).
Fausett, L.: Fundamentals of Neural Networks: Architectures, Algorithms, and Applications. Prentice-Hall. (1994).
Dolhansky, B.: Artificial Neural Networks: Matrix Form (Part 5). ML Primers, Neural Networks. Retrieved from http://briandolhansky.com/blog/2014/10/30/artificial-neural-networks-matrix-form-part-5. (2014).
Domeniconi, C.: Proposal of a Darwin-Neural Network for a Robot Implementation. Perspectives in Neural Computing, Taylor Ed., p. 186–193. (1996).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Betkher, Y., Nabais, N., Santos, V. (2017). Impact of ALife Simulation of Darwinian and Lamarckian Evolutionary Theories. In: Leu, G., Singh, H., Elsayed, S. (eds) Intelligent and Evolutionary Systems. Proceedings in Adaptation, Learning and Optimization, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-49049-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-49049-6_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-49048-9
Online ISBN: 978-3-319-49049-6
eBook Packages: EngineeringEngineering (R0)