[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Jointly Learning a Multi-class Discriminative Dictionary for Robust Visual Tracking

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing - PCM 2016 (PCM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9917))

Included in the following conference series:

  • 2526 Accesses

Abstract

Discriminative dictionary learning (DDL) provides an appealing paradigm for appearance modeling in visual tracking due to its superior discrimination power. However, most existing DDL based trackers usually cannot handle the drastic appearance changes, especially for scenarios with background cluster and/or similar object interference. One reason is that they often encounter loss of subtle visual information that is critical to distinguish the object from the distracters. In this paper, we propose a robust tracker via jointly learning a multi-class discriminative dictionary. Our DDL method exploits concurrently the intra-class visual information and inter-class visual correlations to learn the shared dictionary and the class-specific dictionaries. By imposing several discrimination constraints into the objective function, the learnt dictionary is reconstructive, compressive and discriminative, thus can achieve better discriminate the object from the background. Tracking is carried out within a Bayesian inference framework where the joint decision measure is used to construct the observation model. Evaluations on the benchmark dataset demonstrate that the proposed algorithm achieves substantially better overall performance against the state-of-the-art trackers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The cardinality \(\varTheta (\mathbf {X}_{P})\) denotes the number of samples in the sample pool.

References

  1. Arora, S., Ge, R., Moitra, A.: New algorithms for learning incoherent and overcomplete dictionaries. arXiv preprint arXiv:1308.6273 (2013)

  2. Bai, Q., Wu, Z., Sclaroff, S., Betke, M., Monnier, C.: Randomized ensemble tracking. In: ICCV, pp. 2040–2047 (2013)

    Google Scholar 

  3. Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust l1 tracker using accelerated proximal gradient approach. In: CVPR, pp. 1830–1837. IEEE (2012)

    Google Scholar 

  4. Barchiesi, D., Plumbley, M.D.: Learning incoherent dictionaries for sparse approximation using iterative projections and rotations. TSP 61(8), 2055–2065 (2013)

    Google Scholar 

  5. Candes, E., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Probl. 23(3), 969 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Danelljan, M., Shahbaz Khan, F., Felsberg, M., Van de Weijer, J.: Adaptive color attributes for real-time visual tracking. In: CVPR. IEEE (2014)

    Google Scholar 

  7. Hare, S., Saffari, A., Torr, P.H.: Struck: Structured output tracking with kernels. In: ICCV, pp. 263–270 (2011)

    Google Scholar 

  8. He, Y., Pei, M., Yang, M., Wu, Y., Jia, Y.: Online visual tracking by integrating spatio-temporal cues. IET Comput. Vis. 9(1), 124–137 (2015)

    Article  Google Scholar 

  9. Jia, X., Lu, H., Yang, M.: Visual tracking via adaptive structural local sparse appearance model. In: CVPR, pp. 1822–1829 (2012)

    Google Scholar 

  10. Jiang, Z., Lin, Z., Davis, L.S.: Label consistent K-SVD: learning a discriminative dictionary for recognition. TPAMI 35(11), 2651–2664 (2013)

    Article  Google Scholar 

  11. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. TPAMI 34(7), 1409–1422 (2012)

    Article  Google Scholar 

  12. Kwon, J., Lee, K.: Visual tracking decomposition. In: CVPR, pp. 1269–1276 (2010)

    Google Scholar 

  13. Liu, B., Huang, J., Yang, L., Kulikowsk, C.: Robust tracking using local sparse appearance model and k-selection. In: CVPR, pp. 1313–1320 (2011)

    Google Scholar 

  14. Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for visual tracking. In: ICCV, pp. 3074–3082 (2015)

    Google Scholar 

  15. Mei, X., Ling, H.: Robust visual tracking using \(\ell 1\) minimization. In: ICCV, pp. 1–8 (2009)

    Google Scholar 

  16. Mei, X., Ling, H., Wu, Y., Blasch, E., Bai, L.: Minimum error bounded efficient \(\ell 1\) tracker with occlusion detection. In: CVPR, pp. 1257–1264. IEEE (2011)

    Google Scholar 

  17. Ross, D., Lim, J., Lin, R., Yang, M.: Incremental learning for robust visual tracking. IJCV 77(1), 125–141 (2008)

    Article  Google Scholar 

  18. Wang, D., Lu, H., Yang, M.H.: Least soft-threshold squares tracking. In: CVPR, pp. 2371–2378 (2013)

    Google Scholar 

  19. Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: ICCV, pp. 3119–3127 (2015)

    Google Scholar 

  20. Wang, N., Wang, J., Yeung, D.Y.: Online robust non-negative dictionary learning for visual tracking. In: ICCV, pp. 657–664. IEEE (2013)

    Google Scholar 

  21. Wang, Q., Chen, F., Xu, W., Yang, M.: Online discriminative object tracking with local sparse representation. In: WACV, pp. 425–432 (2012)

    Google Scholar 

  22. Wang, Q., Chen, F., Xu, W., Yang, M.H.: Object tracking with joint optimization of representation and classification. IEEE Trans. Circ. Syst. Video Technol. 25(4), 638–650 (2015)

    Article  Google Scholar 

  23. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: CVPR, pp. 2411–2418. IEEE (2013)

    Google Scholar 

  24. Wu, Y., Ma, B., Yang, M., Jia, Y., Zhang, J.: Metric learning based structural appearance model for robust visual tracking. TCSVT 24(5), 865–877 (2014)

    Google Scholar 

  25. Wu, Y., Pei, M., Yang, M., Yuan, J., Jia, Y.: Robust discriminative tracking via landmark-based label propagation. TIP 24(5), 1510–1523 (2015)

    MathSciNet  Google Scholar 

  26. Yang, F., Jiang, Z., Davis, L.S.: Online discriminative dictionary learning for visual tracking. In: WACV (2014)

    Google Scholar 

  27. Yang, M., Pei, M., Wu, Y., Jia, Y.: Learning online structural appearance model for robust object tracking. Sci. Chin. Inf. Sci. 58(3), 1–14 (2015)

    Article  Google Scholar 

  28. Yao, R., Shi, Q., Shen, C., Zhang, Y., van den Hengel, A.: Part-based visual tracking with online latent structural learning. In: CVPR, pp. 2363–2370 (2013)

    Google Scholar 

  29. Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33712-3_62

    Chapter  Google Scholar 

  30. Zhang, L., Lu, H., Du, D., Liu, L.: Sparse hashing tracking. TIP 25(2), 840–849 (2016)

    MathSciNet  Google Scholar 

  31. Zhong, W., Lu, H., Yang, M.: Robust object tracking via sparsity-based collaborative model. TIP 23(5), 2356–2368 (2014)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingtao Pei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Liu, Z., Pei, M., Zhang, C., Zhu, M. (2016). Jointly Learning a Multi-class Discriminative Dictionary for Robust Visual Tracking. In: Chen, E., Gong, Y., Tie, Y. (eds) Advances in Multimedia Information Processing - PCM 2016. PCM 2016. Lecture Notes in Computer Science(), vol 9917. Springer, Cham. https://doi.org/10.1007/978-3-319-48896-7_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48896-7_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48895-0

  • Online ISBN: 978-3-319-48896-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics