Abstract
Datasets published on the Web and following the Linked Open Data (LOD) practices have the potential to enrich other LOD datasets in multiple domains. However, the lack of descriptive information, combined with the large number of available LOD datasets, inhibits their interlinking and consumption. Aiming at facilitating such tasks, this paper proposes an automated clustering process for the LOD datasets that, thereby, provide an up-to-date description of the LOD cloud. The process combines metadata inspection and extraction strategies, community detection methods and dataset profiling techniques. The clustering process is evaluated using the LOD diagram as ground truth. The results show the ability of the proposed process to replicate the LOD diagram and to identify new LOD dataset clusters. Finally, experiments conducted by LOD experts indicate that the clustering process generates dataset clusters that tend to be more descriptive than those manually defined in the LOD diagram.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ngomo, A.-C.N., Auer, S.: LIMES - a time-efficient approach for large-scale link discovery on the web of data. In: Presented at the 22nd International Joint Conference on Artificial Intelligence (2011)
Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: SILK - a link discovery framework for the web of data. In: Presented at the Workshop on Linked Data on the Web Colocated with the 18th International World Wide Web Conference (2009)
Jentzsch, A., Cyganiak, R., Bizer, C.: State of the LOD Cloud. http://lod-cloud.net/state/
Schmachtenberg, M., Bizer, C., Paulheim, H.: adoption of the linked data best practices in different topical domains. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 245–260. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11964-9_16
Ertöz, L., Steinbach, M., Kumar, V.: Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In: Presented at the SIAM International Conference on Data Mining, San Francisco, CA (2003)
Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. PNAS 99, 7821–7826 (2002)
Lee, C., Reid, F., McDaid, A., Hurley, N.: Detecting highly overlapping community structure by greedy clique expansion. In: Presented at the 4th International Workshop on Social Network Mining and Analysis Colocated with the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2010)
Gregory, S.: Finding overlapping communities in networks by label propagation. New J. Phys. 12, 103018 (2010)
Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)
Pereira Nunes, B., Mera, A., Casanova, M.A., Fetahu, B., Paes Leme, L.A.P., Dietze, S.: Complex matching of RDF datatype properties. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds.) DEXA 2013, Part I. LNCS, vol. 8055, pp. 195–208. Springer, Heidelberg (2013)
Kawase, R., Siehndel, P., Nunes, B.P., Herder, E., Nejdl, W.: Exploiting the wisdom of the crowds for characterizing and connecting heterogeneous resources. In: Presented at the 25th ACM Conference on Hypertext and Social Media, New York, New York, USA (2014)
Fortunato, S.: Community detection in graphs. Physics Reports, vol. 486 (2010)
Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: the state-of-the-art and comparative study. In: CSUR, vol. 45 (2013)
Rodriguez, M.A.: A Graph Analysis of the Linked Data Cloud. ArXiv e-prints (2009)
Fetahu, B., Dietze, S., Pereira Nunes, B., Antonio Casanova, M., Taibi, D., Nejdl, W.: A scalable approach for efficiently generating structured dataset topic profiles. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 519–534. Springer, Heidelberg (2014)
Lalithsena, S., Hitzler, P., Sheth, A.P., Jain, P.: Automatic domain identification for linked open data. In: Presented at the International Conference on Web Intelligence and Conference on Intelligent Agent Technology (2013)
Emaldi, M., Corcho, O., López-de-Ipiña, D.: Detection of related semantic datasets based on frequent subgraph mining. In: Presented at the Workshop on Intelligent Exploration of Semantic Data Colocated with the 14th International Semantic Web Conference (2015)
Rabello Lopes, G., Paes Leme, L.A.P., Pereira Nunes, B., Casanova, M.A., Dietze, S.: Two approaches to the dataset interlinking recommendation problem. In: Benatallah, B., Bestavros, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds.) WISE 2014, Part I. LNCS, vol. 8786, pp. 324–339. Springer, Heidelberg (2014)
Caraballo, A.A.M., Nunes, B.P., Lopes, G.R., Paes Leme, L.A.P., Casanova, M.A., Dietze, S.: TRT - a tripleset recommendation tool. In: Presented at the 12th International Semantic Web Conference (2013)
Leme, L.A.P., Lopes, G.R., Nunes, B.P., Casanova, M.A., Dietze, S.: Identifying candidate datasets for data interlinking. In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 354–366. Springer, Heidelberg (2013)
Lopes, Giseli Rabello, Leme, Luiz André PPaes, Nunes, Bernardo Pereira, Casanova, Marco Antonio, Dietze, Stefan: Recommending tripleset interlinking through a social network approach. In: Lin, Xuemin, Manolopoulos, Yannis, Srivastava, Divesh, Huang, Guangyan (eds.) WISE 2013, Part I. LNCS, vol. 8180, pp. 149–161. Springer, Heidelberg (2013)
Acknowledgments
This work was partly funded by CNPq under grants 153908/2015-7, 557128/2009-9, 444976/2014-0, 303332/2013-1, 442338/2014-7 and 248743/2013-9 and by FAPERJ under grants e E-26-170028/2008 and E-26/201.337/2014. The authors would also like to thank the Microsoft Azure Research Program by the cloud resources awarded for the project entitled “Assessing Recommendation Approaches for Dataset Interlinking”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Caraballo, A.A.M., Nunes, B.P., Lopes, G.R., Leme, L.A.P.P., Casanova, M.A. (2016). Automatic Creation and Analysis of a Linked Data Cloud Diagram. In: Cellary, W., Mokbel, M., Wang, J., Wang, H., Zhou, R., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2016. WISE 2016. Lecture Notes in Computer Science(), vol 10041. Springer, Cham. https://doi.org/10.1007/978-3-319-48740-3_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-48740-3_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48739-7
Online ISBN: 978-3-319-48740-3
eBook Packages: Computer ScienceComputer Science (R0)