[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On Residual Approximation in Solution Extension Problems

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10043))

  • 1219 Accesses

Abstract

The solution extension variant of a problem consists in, being given an instance and a partial solution, finding the best solution comprising the given partial solution. Many problems have been studied with a similar approach. For instance the Precoloring Extension problem, the clustered variant of the Travelling Salesman problem, or the General Routing Problem are in a way typical examples of solution extension variant problems. Motivated by practical applications of such variants, this work aims to explore different aspects around extension on classical optimization problems. We define residue-approximations as algorithms whose performance ratio on the non-prescribed part can be bounded, and corresponding complexity classes. Using residue-approximation, we classify several problems according to their residue-approximability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anily, S., Bramel, J., Hertz, A.: A 5/3-approximation algorithm for the clustered traveling salesman tour and path problems. Oper. Res. Lett. 24(1–2), 29–35 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arkin, E.M., Hassin, R., Klein, L.: Restricted delivery problems on a network. Networks 29(4), 205–216 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avidor, A., Zwick, U.: Approximating MIN 2-SAT and MIN 3-SAT. Theory Comput. Syst. 38(3), 329–345 (2005). ISSN 1433–0490

    Article  MathSciNet  MATH  Google Scholar 

  4. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM J. Discrete Math. 12(3), 289–297 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the weighted vertex cover problem. J. Algorithms 2(2), 198–203 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Biró, M., Hujter, M., Tuza, Z.: Precoloring extension. i. interval graphs. Discrete Math. 100(1–3), 267–279 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Björklund, A., Husfeldt, T., Taslaman, N.: Shortest cycle through specified elements. In Proceedings of 23rd SODA, pp. 1747–1753 (2012)

    Google Scholar 

  8. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. TR 388, Graduate School of Industrial Administration. Carnegie Mellon University (1976)

    Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  10. Gendreau, M., Laporte, G., Hertz, A.: An approximation algorithm for the traveling salesman problem with backhauls. Oper. Res. 45(4), 639–641 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goemans, M.X., Williamson, D.P.: New 3/4-approximation algorithms for the maximum satisfiability problem. SIAM J. Discrete Math. 7(4), 656–666 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gusfield, D., Pitt, L.: A bounded approximation for the minimum cost 2-SAT problem. Algorithmica 8(2), 103–117 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guttmann-Beck, N., Hassin, R., Khuller, S., Raghavachari, B.: Approximation algorithms with bounded performance guarantees for the clustered traveling salesman problem. Algorithmica 28(4), 422–437 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hujter, M., Tuza, Z.: Precoloring extension. ii. graphs classes related to bipartite graphs. Acta Math. Univ. Comenian. (N.S.) 62(1), 1–11 (1993)

    MathSciNet  MATH  Google Scholar 

  15. Jansen, K.: An approximation algorithm for the general routing problem. Inf. Process. Lett. 41(6), 333–339 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Knauer, M., Spoerhase, J.: Better approximation algorithms for the maximum internal spanning tree problem. Algorithmica 71(4), 797–811 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marx, D.: Precoloring extension on unit interval graphs. Discrete Appl. Math. 154(6), 995–1002 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Orloff, C.S.: A fundamental problem in vehicle routing. Networks 4(1), 35–64 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Robins, G., Zelikovsky, A.: Improved steiner tree approximation in graphs. In: Proceedings of 11th SODA, pp. 770–779 (2000)

    Google Scholar 

  20. Simchi-Levi, D.: New worst-case results for the bin packing problem. Naval Res. Logist. 41, 579–585 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Weller, M., Chateau, A., Giroudeau, R.: Exact approaches for scaffolding. BMC Bioinform. 16(Suppl. 14), S2 (2015)

    Article  Google Scholar 

  22. Weller, M., Chateau, A., Giroudeau, R.: On the complexity of scaffolding problems: from cliques to sparse graphs. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.) COCOA 2015. LNCS, vol. 9486, pp. 409–423. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26626-8_30

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Chateau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Weller, M., Chateau, A., Giroudeau, R., König, JC., Pollet, V. (2016). On Residual Approximation in Solution Extension Problems. In: Chan, TH., Li, M., Wang, L. (eds) Combinatorial Optimization and Applications. COCOA 2016. Lecture Notes in Computer Science(), vol 10043. Springer, Cham. https://doi.org/10.1007/978-3-319-48749-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48749-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48748-9

  • Online ISBN: 978-3-319-48749-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics