[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Vegetation Segmentation in Cornfield Images Using Bag of Words

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10016))

Abstract

We provide an alternative methodology for vegetation segmentation in cornfield images. The process includes two main steps, which makes the main contribution of this approach: (a) a low-level segmentation and (b) a class label assignment using Bag of Words (BoW) representation in conjunction with a supervised learning framework. The experimental results show our proposal is adequate to extract green plants in images of maize fields. The accuracy for classification is 95.3 % which is comparable to values in current literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. RHEA: robot fleets for highly effective agriculture and forestry management (2016). http://www.rhea-project.eu/

  2. Mousazadeh, H.: A technical review on navigation systems of agricultural autonomous off-road vehicles. J. Terramech. 50(3), 211–232 (2013)

    Article  Google Scholar 

  3. Saxena, L., Armstrong, L.: A survey of image processing techniques for agriculture. In: Proceedings of Asian Federation for Information Technology in Agriculture (2014)

    Google Scholar 

  4. Haug, S., Michaels, A., Biber, P., Ostermann, J.: Plant classification system for crop/weed discrimination without segmentation. In: IEEE Winter Conference on Applications of Computer Vision, pp. 1142–1149, March 2014

    Google Scholar 

  5. Hlaing, S.H., Khaing, A.S.: Weed and crop segmentation and classification using area thresholding. J. Res. Eng. Technol. 3, 375 (2014)

    Google Scholar 

  6. Tewari, V., Kumar, A.A., Nare, B., Prakash, S., Tyagi, A.: Microcontroller based roller contact type herbicide applicator for weed control under row crops. Comput. Electron. Agric. 104, 40–45 (2014)

    Article  Google Scholar 

  7. Choi, K.H., Han, S.K., Han, S.H., Park, K.H., Kim, K.S., Kim, S.: Morphology-based guidance line extraction for an autonomous weeding robot in paddy fields. Comput. Electron. Agric. 113, 266–274 (2015)

    Article  Google Scholar 

  8. Torres-Snchez, J., Lpez-Granados, F., Pea, J.: An automatic object-based method for optimal thresholding in UAV images: application for vegetation detection in herbaceous crops. Comput. Electron. Agric. 114, 43–52 (2015)

    Article  Google Scholar 

  9. Yang, W., Zhao, X., Wang, S., Chen, L., Chen, X., Lu, S.: A new approach for greenness identification from maize images. In: Huang, D.-S., Bevilacqua, V., Prashan, P. (eds.) ICIC 2015. LNCS, vol. 9225, pp. 339–347. Springer, Heidelberg (2015). doi:10.1007/978-3-319-22180-9_33

    Chapter  Google Scholar 

  10. Jiang, G., Wang, Z., Liu, H.: Automatic detection of crop rows based on multi-rois. Expert Syst. Appl. 42(5), 2429–2441 (2015)

    Article  MathSciNet  Google Scholar 

  11. Meng, Q., Qiu, R., He, J., Zhang, M., Ma, X., Liu, G.: Development of agricultural implement system based on machine vision and fuzzy control. Comput. Electron. Agric. 112, 128–138 (2015). Precision Agriculture

    Article  Google Scholar 

  12. Guijarro, M., Riomoros, I., Pajares, G., Zitinski, P.: Discrete wavelets transform for improving greenness image segmentation in agricultural images. Comput. Electron. Agric. 118, 396–407 (2015)

    Article  Google Scholar 

  13. Balasubramaniam, P., Ananthi, V.P.: Segmentation of nutrient deficiency in incomplete crop images using intuitionistic fuzzy c-means clustering algorithm. Nonlinear Dyn. 83(1), 849–866 (2015)

    Google Scholar 

  14. Kazmi, W., Garcia-Ruiz, F.J., Nielsen, J., Rasmussen, J., Andersen, H.J.: Detecting creeping thistle in sugar beet fields using vegetation indices. Comput. Electron. Agric. 112, 10–19 (2015). Precision Agriculture

    Article  Google Scholar 

  15. Kazmi, W., Garcia-Ruiz, F., Nielsen, J., Rasmussen, J., Andersen, H.J.: Exploiting affine invariant regions and leaf edge shapes for weed detection. Comput. Electron. Agric. 118, 290–299 (2015)

    Article  Google Scholar 

  16. Ye, M., Cao, Z., Yu, Z., Bai, X.: Crop feature extraction from images with probabilistic superpixel Markov random field. Comput. Electron. Agric. 114, 247–260 (2015)

    Article  Google Scholar 

  17. Cheng, B., Matson, E.T.: A feature-based machine learning agent for automatic rice and weed discrimination. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 517–527. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19324-3_46

    Chapter  Google Scholar 

  18. Moorthy, S., Boigelot, B., Mercatoris, B.: Effective segmentation of green vegetation for resource-constrained real-time applications. In: Proceedings of Precision Agriculture (2015)

    Google Scholar 

  19. Santos, T.T., Koenigkan, L.V., Barbedo, J.G.A., Rodrigues, G.C.: 3D plant modeling: localization, mapping and segmentation for plant phenotyping using a single hand-held camera. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8928, pp. 247–263. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16220-1_18

    Google Scholar 

  20. Ionescu, R.T., Popescu, A.L., Popescu, M., Popescu, D.: Biomassid: a biomass type identification system for mobile devices. Comput. Electron. Agric. 113, 244–253 (2015)

    Article  Google Scholar 

  21. Woebbecke, D., Meyer, G., Von Bargen, K., Mortensen, D.: Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 38(1), 259–269 (1995)

    Article  Google Scholar 

  22. Meyer, G., Mehta, T., Kocher, M., Mortensen, D., Samal, A.: Textural imaging and discriminant analysis for distinguishing weeds for spot spraying. Trans. ASAE 41(4), 1189 (1998)

    Article  Google Scholar 

  23. Kataoka, T., Kaneko, T., Okamoto, H., et al.: Crop growth estimation system using machine vision. In: Proceedings of 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2003, vol. 2, pp. b1079–b1083. IEEE (2003)

    Google Scholar 

  24. Meyer, G.E., Neto, J.C.: Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 63(2), 282 (2008)

    Article  Google Scholar 

  25. Woebbecke, D.M., Meyer, G.E., Von Bargen, K., Mortensen, D.A.: Plant species identification, size, and enumeration using machine vision techniques on near-binary images. In: Proceedings of Applications in Optical Science and Engineering, International Society for Optics and Photonics, pp. 208–219 (1993)

    Google Scholar 

  26. Golzarian, M.R., Frick, R.A.: Classification of images of wheat, ryegrass and brome grass species at early growth stages using principal component analysis. Plant Methods 7(1), 1–11 (2011)

    Article  Google Scholar 

  27. Salton, G., Mcgill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill Inc., New York (1986)

    MATH  Google Scholar 

  28. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, New York (2006)

    MATH  Google Scholar 

  29. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  30. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008). Similarity Matching in Computer Vision and Multimedia

    Article  Google Scholar 

  31. Guijarro, M., Pajares, G., Riomoros, I., Herrera, P., Burgos-Artizzu, X., Ribeiro, A.: Automatic segmentation of relevant textures in agricultural images. Comput. Electron. Agric. 75(1), 75–83 (2011)

    Article  Google Scholar 

  32. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  33. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)

    Article  Google Scholar 

  34. Labatut, V., Cherifi, H.: Accuracy measures for the comparison of classifiers. CoRR abs/1207.3790 (2012)

    Google Scholar 

  35. Kohonen, T. (ed.): Self-organizing Maps. Springer, New York (1997)

    MATH  Google Scholar 

  36. Dunn, J.C.: A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  37. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  38. Brust, C., Sickert, S., Simon, M., Rodner, E., Denzler, J.: Convolutional patch networks with spatial prior for road detection and urban scene understanding. CoRR abs/1502.06344 (2015)

    Google Scholar 

  39. Fröhlich, B., Rodner, E., Denzler, J.: Semantic segmentation with millions of features: integrating multiple cues in a combined random forest approach. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 218–231. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37331-2_17

    Chapter  Google Scholar 

  40. Larlus, D., Verbeek, J., Jurie, F.: Category level object segmentation by combining bag-of-words models with dirichlet processes and random fields. Int. J. Comput. Vis. 88(2), 238–253 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

H. Sossa thanks CONACyT under call: Frontiers of Science (grant number 65) for the economic support. We would like to express our sincere gratitude to Jena University research team for their fruitful comments and suggestions for significant improvement of this work, especially to Sven Sickert who help providing results with ICF algorithm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yerania Campos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Campos, Y., Rodner, E., Denzler, J., Sossa, H., Pajares, G. (2016). Vegetation Segmentation in Cornfield Images Using Bag of Words. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2016. Lecture Notes in Computer Science(), vol 10016. Springer, Cham. https://doi.org/10.1007/978-3-319-48680-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48680-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48679-6

  • Online ISBN: 978-3-319-48680-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics