[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Real-Time Patient Table Removal in CT Images

  • Conference paper
  • First Online:
Health Information Science (HIS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10038))

Included in the following conference series:

Abstract

As a routine tool for screening and examination, CT plays an important role in disease detection and diagnosis. Real-time table removal in CT images becomes a fundamental task to improve readability, interpretation and treatment planning. Meanwhile, it makes data management simple and benefits information sharing and communication in picture archiving and communication system. In this paper, we proposed an automated framework which utilized parallel programming to address this problem. Eight full-body CT images were collected and analyzed. Experimental results have shown that with parallel programming, the proposed framework can accelerate the patient table removal task up to three times faster when it was running on a personal computer with four-core central processing unit. Moreover, the segmentation accuracy reaches 99 % of Dice coefficient. The idea behind this approach refreshes many algorithms for real-time medical image processing without extra hardware spending.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mettler, Jr. F.A., Wiest, P.W., Locken, J.A., et al.: CT scanning: patterns of use and dose. J. Radiol. Protect. 20(4), 353–359 (2000)

    Google Scholar 

  2. Li, T., Xing, L.: Optimizing 4D cone-beam CT acquisition protocol for external beam radiotherapy. Intl. J. Radiat. Oncol. Biol. Phys. 67(4), 1211–1219 (2007)

    Article  MathSciNet  Google Scholar 

  3. Paquin, D., Levy, D., Xing, L.: Multiscale registration of planning CT and daily cone beam CT images for adaptive radiation therapy. Medical Phys. 36(1), 4–11 (2009)

    Article  Google Scholar 

  4. Xing, L., Wessels, B., Hendee, W.R.: The value of PET/CT is being over-sold as a clinical tool in radiation oncology. Medical Phys. 32(6), 1457–1459 (2005)

    Article  Google Scholar 

  5. Smith-Bindman, R., Lipson, J., Marcus, R., et al.: Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch. Internal Med. 169(22), 2078–2086 (2009)

    Article  Google Scholar 

  6. Zhu, Y.M., Cochoff, S.M., Sukalac, R.: Automatic patient table removal in CT images. J. Digital Imag. 169(22), 25(4), 480–485 (2012)

    Google Scholar 

  7. Kim, J., Hu, Y., Eberl, S., et al.: A fully automatic bed/linen segmentation for fused PET/CT MIP rendering. Soc. Nuclear Med. Ann. Meet. Abs. 49(Supplement 1), 387 (2008)

    Google Scholar 

  8. Chao, M., Xie, Y., Xing, L.: Auto-propagation of contours for adaptive prostate radiation therapy. Phys. Med. Biol. 53(17), 4533 (2008)

    Article  Google Scholar 

  9. Xie, Y., Chao, M., Lee, P., et al.: Feature-based rectal contour propagation from planning CT to cone beam CT. Med. Phys. 35(10), 4450–4459 (2008)

    Article  Google Scholar 

  10. Schreibmann, E., Chen, G.T.Y., Xing, L.: Image interpolation in 4D CT using a BSpline deformable registration model. Intl. J. Radiat. Oncol. Biol. Phys. 64(5), 1537–1550 (2006)

    Article  Google Scholar 

  11. Mihaylov, I.B., Corry, P., Yan, Y., et al.: Modeling of carbon fiber couch attenuation properties with a commercial treatment planning system. Med. Phys. 35(11), 4982–4988 (2008)

    Article  Google Scholar 

  12. Zhang, R., Zhou, W., et al.: Nonrigid registration of lung CT images based on tissue features. Comput. Math. Methods Med. 2013, 7 (2013)

    Google Scholar 

  13. Ammenwerth, E., Graber, S., Herrmann, G., et al.: Evaluation of health information systems - problems and challenges. Intl. J. Med. Inf. 71(2), 125–135 (2003)

    Article  Google Scholar 

  14. Haux, R.: Health information systems Cpast, present, future. Intl. J. Med. Inf. 75(3), 268–281 (2006)

    Article  Google Scholar 

  15. Zhou, W., Xie, Y.: Interactive contour delineation and refinement in treatment planning of image-guided radiation therapy. J. Appl. Clin. Med. Phys. 15(1), 4499 (2014)

    Google Scholar 

  16. Zhou, W., Xie, Y.: Interactive medical image segmentation using snake and multiscale curve editing. Comput. Math. Methods Med. 2013, 1–22 (2013)

    Google Scholar 

  17. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)

    Article  MATH  Google Scholar 

  18. Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11(285–296), 23–27 (1975)

    Google Scholar 

  19. Du, P., Weber, R., et al.: From CUDA to OpenCL: Towards a performance-portable solution for multi-platform GPU programming. Parallel Comput. 38(8), 391–407 (2012)

    Article  Google Scholar 

  20. Brodtkorb, A.R., Hagen, T.R., et al.: Graphics processing unit (GPU) programming strategies and trends in GPU computing. J. Parallel Distrib. Comput. 73(1), 4–13 (2013)

    Article  Google Scholar 

  21. Wang, G., Zuluaga, M.A., Pratt, R., Aertsen, M., David, A.L., Deprest, J., Vercauteren, T., Ourselin, S.: Slic-seg: slice-by-slice segmentation propagation of the placenta in fetal MRI using one-plane scribbles and online learning. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 29–37. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24574-4_4

    Chapter  Google Scholar 

Download references

Acknowledgment

This work is supported by grants from National Natural Science Foundation of China (Grant No. 81501463), Guangdong Innovative Research Team Program (Grant No. 2011S013), National 863 Programs of China (Grant No. 2015AA043203), Shenzhen Fundamental Research Program (Grant Nos. JCYJ20140417113430726, JCYJ20140417113430665 and JCYJ201500731154850923) and Beijing Center for Mathematics and Information Interdisciplinary Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibin Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Chen, L., Wu, S., Zhang, Z., Yu, S., Xie, Y., Zhang, H. (2016). Real-Time Patient Table Removal in CT Images. In: Yin, X., Geller, J., Li, Y., Zhou, R., Wang, H., Zhang, Y. (eds) Health Information Science. HIS 2016. Lecture Notes in Computer Science(), vol 10038. Springer, Cham. https://doi.org/10.1007/978-3-319-48335-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48335-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48334-4

  • Online ISBN: 978-3-319-48335-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics