[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Concurrent Use of Write-Once Memory

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9988))

  • 838 Accesses

Abstract

We consider the problem of implementing general shared-memory objects on top of write-once bits, which can be changed from 0 to 1 but not back again. In a sequential setting, write-once memory (WOM) codes have been developed that allow simulating memory that support multiple writes, even of large values, setting an average of \(1+o(1)\) write-once bits per write. We show that similar space efficiencies can be obtained in a concurrent setting, though at the cost of high time complexity and fixed bound on the number of write operations. As an alternative, we give an implementation that permits unboundedly many writes and has much better amortized time complexity, but at the cost of unbounded space complexity. Whether one can obtain both low time complexity and low space complexity in the same implementation remains open.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This does not include the \(\varTheta (\log m/\log \log m)\)-step m-valued conflict detector that appears in [5], but does include a simpler \(\varTheta (\log m)\)-step conflict detector in which a write of a value whose bits are \(x_{k-1},\dots , x_0\) is done by setting to 1 the corresponding bits \(A[i][x_i]\) in a \(k \times 2\) array A.

  2. 2.

    For the purpose of obtaining only a non-blocking SWSR write-once register, it is sufficient to construct an infinite array of m-bit locations to which the writer writes in increasing order and the reader searches for the last written location. However, we use here a max-register based implementation in order to build upon it when constructing our following wait-free SWSR and MWMR implementations.

References

  1. Aghazadeh, Z., Woelfel, P.: On the time and space complexity of ABA prevention and detection. In: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, (PODC), pp. 193–202 (2015)

    Google Scholar 

  2. Alistarh, D., Aspnes, J.: Sub-logarithmic test-and-set against a weak adversary. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 97–109. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24100-0_7

    Chapter  Google Scholar 

  3. Aspnes, J., Attiya, H., Censor-Hillel, K.: Polylogarithmic concurrent data structures from monotone circuits. J. ACM 59(1), 2 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aspnes, J., Censor-Hillel, K.: Atomic snapshots in \(O(\log ^{3} n)\) steps using randomized helping. In: Proceedings of the 27th International Symposium on Distributed Computing, (DISC), pp. 254–268 (2013)

    Google Scholar 

  5. Aspnes, J., Ellen, F.: Tight bounds for adopt-commit objects. Theor. Comput. Syst. 55(3), 451–474 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Attiya, H., Fouren, A.: Adaptive and efficient algorithms for lattice agreement and renaming. SIAM J. Comput. 31(2), 642–664 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Topics, 2nd edn. Wiley, Chichester (2004)

    Book  MATH  Google Scholar 

  8. Balakrishnan, M., Malkhi, D., Davis, J.D., Prabhakaran, V., Wei, M., Wobber, T.: CORFU: a distributed shared log. ACM Trans. Comput. Syst. 31(4), 10:1–10:24 (2013)

    Article  Google Scholar 

  9. Bhatia, A., Iyengar, A., Siegel, P.H.: Multilevel 2-cell \(t\)-write codes. In: IEEE Information Theory Workshop (ITW) (2012)

    Google Scholar 

  10. Borowsky, E., Gafni, E., Lynch, N.A., Rajsbaum, S.: The BG distributed simulation algorithm. Distrib. Comput. 14(3), 127–146 (2001)

    Article  Google Scholar 

  11. Burshtein, D., Strugatski, A.: Polar write once memory codes. IEEE Trans. Inf. Theory 59(8), 5088–5101 (2013)

    Article  MathSciNet  Google Scholar 

  12. Cassuto, Y., Yaakobi, E.: Short (Q)-ary fixed-rate WOM codes for guaranteed rewrites and with hot/cold write differentiation. IEEE Trans. Inf. Theory 60(7), 3942–3958 (2014)

    Article  MathSciNet  Google Scholar 

  13. Cohen, G.D., Godlewski, P., Merkx, F.: Linear binary code for write-once memories. IEEE Trans. Inf. Theory 32(5), 697–700 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gad, E.E., Wentao, H., Li, Y., Bruck, J.: Rewriting flash memories by message passing. In: IEEE International Symposium on Information Theory (ISIT) (2015)

    Google Scholar 

  15. Fiat, A., Shamir, A.: Generalized ‘write-once’ memories. IEEE Trans. Inf. Theory 30(3), 470–479 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fu, F.-W., Han Vinck, A.J.: On the capacity of generalized write-once memory with state transitions described by an arbitrary directed acyclic graph. IEEE Trans. Inf. Theory 45(1), 308–313 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giakkoupis, G., Woelfel, P.: On the time and space complexity of randomized test-and-set. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, (PODC), pp. 19–28 (2012)

    Google Scholar 

  18. Godlewski, P.: WOM-codes construits à partir des codes de Hamming. Discrete Math. 65(3), 237–243 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heegard, C.: On the capacity of permanent memory. IEEE Trans. Inf. Theory 31(1), 34–41 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Helmi, M., Higham, L., Woelfel, P.: Strongly linearizable implementations: possibilities and impossibilities. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, (PODC), pp. 385–394 (2012)

    Google Scholar 

  21. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann, San Francisco (2008)

    Google Scholar 

  22. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

    Article  Google Scholar 

  23. Inoue, M., Masuzawa, T., Chen, W., Tokura, N.: Linear-time snapshot using multi-writer multi-reader registers. In: Tel, G., Vitányi, P. (eds.) WDAG 1994. LNCS, vol. 857, pp. 130–140. Springer, Heidelberg (1994). doi:10.1007/BFb0020429

    Chapter  Google Scholar 

  24. Israeli, A., Shaham, A.: Optimal multi-writer multi-reader atomic register. In: Proceedings of the Eleventh Annual ACM Symposium on Principles of Distributed Computing, PODC 1992, pp. 71–82, New York, NY, USA. ACM (1992)

    Google Scholar 

  25. Israeli, A., Shaham, A.: Time and space optimal implementations of atomic multi-writer register. Inf. Comput. 200(1), 62–106 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jacobvitz, A.N., Calderbank, R., Sorin, D.J.: Coset coding to extend the lifetime of memory. In: IEEE 19th International Symposium on High Performance Computer Architecture (HPCA) (2013)

    Google Scholar 

  27. Kraft, L.G.: A device for quantizing, grouping, and coding amplitude-modulated pulses. M.S. thesis, Department of Electrical Engineering, Massachusetts Institute of Technology (1949)

    Google Scholar 

  28. Lamport, L.: On interprocess communication part I: basic formalism. Distrib. Comput. 1(2), 77–85 (1986)

    Article  MATH  Google Scholar 

  29. Lamport, L.: On interprocess communication part II: algorithms. Distrib. Comput. 1(2), 86–101 (1986)

    Article  MATH  Google Scholar 

  30. Li, J., Mohanram, K.: Write-once-memory-code phase change memory. In: Design, Automation and Test in Europe Conference and Exhibition (DATE) (2014)

    Google Scholar 

  31. Margaglia, F., Brinkmann, A.: Improving MLC flash performance and endurance with extended P/E cycles. In: IEEE 31st Symposium on Mass Storage Systems and Technologies (MSST) (2015)

    Google Scholar 

  32. Plotkin, S.A.: Sticky bits and universality of consensus. In: Proceedings of the Eighth Annual ACM Symposium on Principles of Distributed Computing, PODC 1989, pp. 159–175, New York, NY, USA. ACM (1989)

    Google Scholar 

  33. Rivest, R.R., Shamir, A.: How to reuse a “write-once” memory. Inf. Control 55, 1–19 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shpilka, A.: New constructions of WOM codes using the Wozencraft ensemble. IEEE Trans. Inf. Theory 59(7), 4520–4529 (2013)

    Article  MathSciNet  Google Scholar 

  35. Shpilka, A.: Capacity achieving multiwrite WOM codes. IEEE Trans. Inf. Theory 60(3), 1481–1487 (2014)

    Article  MathSciNet  Google Scholar 

  36. Wolf, J.K., Wyner, A.D., Ziv, J., Korner, J.: Coding for a write-once memory. AT&T Bell Laboratories Tech. J. 63(6), 1089–1112 (1984)

    Article  MATH  Google Scholar 

  37. Yunnan, W.: Low complexity codes for writing a write-once memory twice. In: IEEE International Symposium on Information Theory (ISIT) (2010)

    Google Scholar 

  38. Wu, Y., Jiang, A.: Position modulation code for rewriting write-once memories. IEEE Trans. Inf. Theory 57(6), 3692–3697 (2011)

    Article  MathSciNet  Google Scholar 

  39. Yaakobi, E., Kayser, S., Siegel, P.H., Vardy, A., Wolf, J.K.: Codes for write-once memories. IEEE Trans. Inf. Theory 58(9), 5985–5999 (2012)

    Article  MathSciNet  Google Scholar 

  40. Yaakobi, E., Shpilka, A.: High sum-rate three-write and non-binary WOM codes. In: IEEE International Symposium on Information Theory (ISIT) (2012)

    Google Scholar 

  41. Yadgar, G., Yaakobi, E., Schuster, A.: Write once, get 50% free: saving SSD erase costs using WOM codes. In: 13th USENIX Conference on File and Storage Technologies (FAST) (2015)

    Google Scholar 

  42. Zhang, X., Jang, L., Zhang, Y., Zhang, C., Yang, J.: WoM-SET: low power proactive-SET-based PCM write using WoM code. In: IEEE International Symposium on Low Power Electronics and Design (ISLPED) (2013)

    Google Scholar 

Download references

Acknowledgments

Keren Censor-Hillel is supported in part by the Israel Science Foundation (grant 1696/14). The authors thank the anonymous reviewers for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keren Censor-Hillel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Aspnes, J., Censor-Hillel, K., Yaakobi, E. (2016). Concurrent Use of Write-Once Memory. In: Suomela, J. (eds) Structural Information and Communication Complexity. SIROCCO 2016. Lecture Notes in Computer Science(), vol 9988. Springer, Cham. https://doi.org/10.1007/978-3-319-48314-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48314-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48313-9

  • Online ISBN: 978-3-319-48314-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics