[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Contrasting Public Opinion Dynamics and Emotional Response During Crisis

  • Conference paper
  • First Online:
Social Informatics (SocInfo 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10046))

Included in the following conference series:

Abstract

We propose an approach for contrasting spatiotemporal dynamics of public opinions expressed toward targeted entities, also known as stance detection task, in Russia and Ukraine during crisis. Our analysis relies on a novel corpus constructed from posts on the VKontakte social network, centered on local public opinion of the ongoing Russian-Ukrainian crisis, along with newly annotated resources for predicting expressions of fine-grained emotions including joy, sadness, disgust, anger, surprise and fear. Akin to prior work on sentiment analysis we align traditional public opinion polls with aggregated automatic predictions of sentiments for contrastive geo-locations. We report interesting observations on emotional response and stance variations across geo-locations. Some of our findings contradict stereotypical misconceptions imposed by media, for example, we found posts from Ukraine that do not support Euromaidan but support Putin, and posts from Russia that are against Putin but in favor USA. Furthermore, we are the first to demonstrate contrastive stance variations over time across geo-locations using storyline visualization (Storyline visualization is available at http://www.cs.jhu.edu/~svitlana/) technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Anonymized VK corpus is available upon request at http://www.cs.jhu.edu/~svitlana/.

  2. 2.

    Pre-trained models for emotion prediction and data annotated with 6 Ekman’s emotions in Russian and Ukrainian can be found at http://www.cs.jhu.edu/~svitlana/.

  3. 3.

    Social Network Analysis Reveals Full Scale of Kremlin’s Twitter Bot: https://globalvoices.org/2015/04/02/analyzing-kremlin-twitter-bots/.

  4. 4.

    Inside Putin’s Campaign Of Social Media Trolling And Faked Ukrainian Crimes: http://www.forbes.com/sites/paulroderickgregory/2014/05/11/inside-putins-campaign-of-social-media-trolling-and-faked-ukrainian-crimes/#238cfd72629d.

  5. 5.

    Ukraine conflict: Inside Russia’s ’Kremlin troll army’: http://www.bbc.com/news/world-europe-31962644.

  6. 6.

    VK demographics: http://www.slideshare.net/andrewik1/v-kontakte-demographics.

  7. 7.

    Minsk I: https://en.wikipedia.org/wiki/Minsk_Protocol.

  8. 8.

    Minsk II: https://en.wikipedia.org/wiki/Minsk_II.

  9. 9.

    We prefer Ekman’s emotion classification over others e.g., Plutchik’s, because we would like to compare the performance of our predictive models to other systems.

  10. 10.

    Morphological analyzer for Russian: https://pypi.python.org/pypi/pymorphy2.

  11. 11.

    Donetsk people’s republic: https://en.wikipedia.org/wiki/Luhansk_People’s_Republic.

  12. 12.

    Luhansk People’s Republic: https://en.wikipedia.org/wiki/Luhansk_People’s_Republic.

  13. 13.

    http://www.cbsnews.com/videos/cbs-news-trending-stories-for-november-5-2015/.

  14. 14.

    http://theweek.com/10things/580982/10-things-need-know-today-november-7-2015.

  15. 15.

    http://www.nytimes.com/2014/11/18/world/europe/eu-to-toughen-sanctions-on-ukraine-separatists-but-not-russia.html?_r=1.

  16. 16.

    http://www.cnbc.com/2014/11/17/german-economy-minister-rejects-tougher- sanctions-on-russia.html#.

  17. 17.

    http://www.gallup.com/poll/122840/gallup-daily-economic-indexes.aspx.

References

  1. Alves, A.L.F., de Souza Baptista, C., Firmino, A.A., de Oliveira, M.G., de Paiva, A.C.: A spatial, temporal sentiment analysis approach applied to Twitter microtexts. J. Inf. Data Manag. 6(2), 118 (2016)

    Google Scholar 

  2. Ashktorab, Z., Brown, C., Nandi, M., Culotta, A., Tweedr: mining Twitter to inform disaster response. In: Proceedings of the International Conference on Information Systems for Crisis Response and Management (SCRAM) (2014)

    Google Scholar 

  3. Bastos, M. T., Mercea, D.: Political Twitter beyond influentials and the twittertariat. New Media & Society, Serial activists (2015)

    Google Scholar 

  4. Bermingham, A., Smeaton, A.F.: On using twitter to monitor political sentiment and predict election results. In: Joint Conference for Natural Language Processing (IJCNLP) (2011)

    Google Scholar 

  5. Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. J. Comput. Sci. 2(1), 1–8 (2011)

    Article  Google Scholar 

  6. Chang, L., Krosnick, J.A.: National surveys via rdd telephone interviewing versus the internet comparing sample representativeness and response quality. Pub. Opin. Quart. 73(4), 641–678 (2009)

    Article  Google Scholar 

  7. Chetviorkin, I., Loukachevitch, N.: Evaluating sentiment analysis systems in Russian. In: Proceedings of ACL (2013)

    Google Scholar 

  8. Chew, C., Eysenbach, G.: Pandemics in the age of Twitter: content analysis of tweets during the 2009 H1N1 outbreak. PloS one 5(11), e14118 (2010)

    Article  Google Scholar 

  9. Corley, C.D., Cook, D.J., Mikler, A.R., Singh, K.P.: Text and structural data mining of influenza mentions in web and social media. Int. J. Environ. Res. Pub. Health 7(2), 596–615 (2010)

    Article  Google Scholar 

  10. De Choudhury, M., Gamon, M., Counts, S.: Happy, nervous or surprised? Classification of human affective states in social media. In: Proceedings of ICWSM (2012)

    Google Scholar 

  11. Ekman, P.: An argument for basic emotions. Cogn. Emot. 6(3–4), 169–200 (1992)

    Article  Google Scholar 

  12. Fan, R., Zhao, J., Chen, Y., Ke, X.: Anger is more influential than joy: sentiment correlation in Weibo. arXiv preprint arXiv:1309.2402 (2013)

  13. González-Ibáñez, R., Muresan, S., Wacholder, N.: Identifying sarcasm in Twitter: a closer look. In: Proceedings of ACL, pp. 581–586 (2011)

    Google Scholar 

  14. Ho, S.S., Lieberman, M., Wang, P., Samet, H.: Mining future spatiotemporal events and their sentiment from online news articles for location-aware recommendation system. In: Proceedings of the First ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems, pp. 25–32. ACM (2012)

    Google Scholar 

  15. Hodas, N.O., Lerman, K.: The simple rules of social contagion. Scientific reports, 4 (2014)

    Google Scholar 

  16. IFES: Public Opinion Survey in Ukraine, September 2015. http://www.ifes.org/surveys/september-2015-public-opinion-survey-ukraine

  17. Kim, N.W., Card, S.K., Heer, J.: Tracing genealogical data with timenets. In: Proceedings of the International Conference on Advanced Visual Interfaces, pp. 241–248. ACM (2010)

    Google Scholar 

  18. Kuznetsova, E.S., Loukachevitch, N.V., Chetviorkin, I.I.: Testing rules for a sentiment analysis system. In: Proceedings of International Conference Dialog, pp. 71–80 (2013)

    Google Scholar 

  19. Lampos, V., Bie, T., Cristianini, N.: Flu detector - tracking epidemics on Twitter. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6323, pp. 599–602. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15939-8_42

    Chapter  Google Scholar 

  20. Lampos, V., Preotiuc-Pietro, D., Cohn, T.: A user-centric model of voting intention from social media. In: Proceedings of ACL, pp. 993–1003 (2013)

    Google Scholar 

  21. Lansdall-Welfare, T., Lampos, V., Cristianini, N.: Effects of the recession on public mood in the UK. In: Proceedings of the 21st International Conference Companion on World Wide Web, pp. 1221–1226. ACM (2012)

    Google Scholar 

  22. Levada. Ukraine, Crimea, Sanctions (2015). http://www.levada.ru/2015/04/06/ukraina-krym-sanktsii/

  23. Levada, C., Putin, V.: Trust, Evaluations, Attitudes (2015). http://www.levada.ru/2015/03/27/vladimir-putin-doverie-otsenki-otnoshenie/

  24. Liu, S., Yingcai, W., Wei, E., Liu, M., Liu, Y.: Storyflow: tracking the evolution of stories. IEEE Trans. Visual Comput. Graphics 19(12), 2436–2445 (2013)

    Article  Google Scholar 

  25. Loukachevitch, N., Chetviorkin, I.: Open evaluation of sentiment-analysis systems based on the material of the Russian language. Sci. Tech. Inf. Process. 41(6), 370–376 (2014)

    Article  Google Scholar 

  26. Loukachevitch, N.V. and Chetviorkin, I.I.:Refinement of Russian sentiment lexicons using ruthes thesaurus. In: Proceedings of the 16th All-Russian Conference on Digital Libraries: Advanced Methods and Technologies, Digital Collections (2014)

    Google Scholar 

  27. Mandel, B., Culotta, A., Boulahanis, J., Stark, D., Lewis, B., Rodrigue, J.: A demographic analysis of online sentiment during hurricane Irene. In: Proceedings of the Second Workshop on Language in Social Media, pp. 27–36. Association for Computational Linguistics (2012)

    Google Scholar 

  28. Mohammad, S.M., Kiritchenko, S.: Using hashtags to capture fine emotion categories from tweets. Comput. Intell. 31(2), 301–326 (2014)

    Article  MathSciNet  Google Scholar 

  29. Nguyen, L.T., Wu, P., Chan, W., Peng, W., Zhang, Y.: Predicting collective sentiment dynamics from time-series social media. In: Proceedings of the 1st International Workshop on Issues of Sentiment Discovery and Opinion Mining, ACM (2012)

    Google Scholar 

  30. O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: linking text sentiment to public opinion time series. In: Proceedings of ICWSM, pp. 122–129 (2010)

    Google Scholar 

  31. Ogawa, M., Ma, K.L.: Software evolution storylines. In: Proceedings of the 5th International Symposium on Software Visualization, pp. 35–42 (2010)

    Google Scholar 

  32. Pang, B., Lee, L., Vaithyanathan, S., Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of EMNLP, pp. 79–86 (2002)

    Google Scholar 

  33. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Poushter, J.: Key findings from our poll on the Russia-Ukraine conflict (2015). http://www.pewresearch.org/fact-tank/2015/06/10/key-findings-from-our-poll-on-the-russia-ukraine-conflict/

  35. Ray, J., Esipova, N.: Ukrainian Approval of Russia’s Leadership Dives Almost 90% (2015). http://www.gallup.com/poll/180110/ukrainian-approval-russia-leadership-dives-almost.aspx?g_source=Ukraine&g_medium=search&g_campaign=tiles

  36. Centre Razumkov. Will Ukraine mostly gain or lose if it joins the EU? (2015). http://www.uceps.org/eng/poll.php?poll_id=675

  37. Reda, K., Tantipathananandh, C., Johnson, A., Leigh, J., Berger-Wolf, T.: Visualizing the evolution of community structures in dynamic social networks. In: Computer Graphics Forum, vol. 30, pp. 1061–1070. Wiley Online Library (2011)

    Google Scholar 

  38. Rekatsinas, T., Ghosh, S., Mekaru, S.R., Nsoesie, E.O., Brownstein, J.S., Getoor, L., Ramakrishnan, N.: Sourceseer: forecasting rare disease outbreaks using multiple data sources. Timeline 7, 8 (2007)

    Google Scholar 

  39. Salathé, M., Khandelwal, S.: Assessing vaccination sentiments with online social media: implications for infectious disease dynamics and control. PLoS Comput. Biol. 7(10), e1002199 (2011)

    Article  Google Scholar 

  40. Santillana, M., Nguyen, A.T., Dredze, M., Paul, M.J., Nsoesie, E.O., Brownstein, J.S.: Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS Comput. Biol. 11(10), e1004513 (2015)

    Article  Google Scholar 

  41. Sap, M., Park, G., Eichstaedt, J.C., Kern, M.L., Stillwell, D., Kosinski, M., Ungar, L.H., Schwartz, H.A.: Developing age and gender predictive lexica over social media. In: Proceedings of EMNLP (2014)

    Google Scholar 

  42. Tanahashi, Y., Hsueh, C.-H., Ma, K.-L.: An efficient framework for generating storyline visualizations from streaming data. IEEE Trans. Vis. Comput. Graph. 21(6), 730–742 (2015)

    Article  Google Scholar 

  43. Terpstra, T., de Vries, A., Stronkman, R., Paradies, G.L.: Towards a realtime twitter analysis during crises for operational crisis management. In: Proceedings of ISCRAM (2012)

    Google Scholar 

  44. Tufekci, Z.: Big questions for social media big data: representativeness, validity and other methodological pitfalls. arXiv preprint arXiv:1403.7400 (2014)

  45. Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M.: Predicting elections with Twitter: what 140 characters reveal about political sentiment. In: Proceedings of ICWSM, pp. 178–185 (2010)

    Google Scholar 

  46. Valitutti, R.: Wordnet-affect: an affective extension of wordnet. In: Proceedings of LREC, pp. 1083–1086 (2004)

    Google Scholar 

  47. Vieweg, S., Hughes, A.L., Starbird, K., Palen, L.: Microblogging during two natural hazards events: what Twitter may contribute to situational awareness. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1079–1088 (2010)

    Google Scholar 

  48. Volkova, S., Bachrach, Y.: On predicting sociodemographic traits and emotions from communications in social networks and their implications to online self-disclosure. Cyberpsychology Behav. Soc. Networking 18(12), 726–736 (2015)

    Article  Google Scholar 

  49. Ievgen Vorobiov. Surprise! Ukraine Loves NATO (2015). http://foreignpolicy.com/2015/08/13/surprise-ukraine-loves-nato/

  50. Wang, J., Zhu, T.: Classify sina weibo users into high or low happiness groups using linguistic, behavior features. arXiv preprint arXiv: 1507.01796 (2015)

  51. Wang, Y., Clark, T., Agichtein, E., Staton, J.: Towards tracking political sentiment through microblog data. In: Proceedings of ACL (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svitlana Volkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Volkova, S., Chetviorkin, I., Arendt, D., Van Durme, B. (2016). Contrasting Public Opinion Dynamics and Emotional Response During Crisis. In: Spiro, E., Ahn, YY. (eds) Social Informatics. SocInfo 2016. Lecture Notes in Computer Science(), vol 10046. Springer, Cham. https://doi.org/10.1007/978-3-319-47880-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47880-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47879-1

  • Online ISBN: 978-3-319-47880-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics