[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Chinese Sentiment Analysis Exploiting Heterogeneous Segmentations

  • Conference paper
  • First Online:
Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data (NLP-NABD 2016, CCL 2016)

Abstract

The Chinese language is a character-based language, with no explicit separators between words like English. Traditionally, word segmentation is conducted to convert Chinese sentences into word sequences, thus the same framework of English sentiment analysis can be exploited for Chinese. These work uses a specified word segmentor as a prerequisite step, yet ignores the fact that different segmentation styles exist in Chinese word segmentation, such as CTB, PKU, MSR and etc. In this paper, we study the influences of these heterogeneous segmentations for Chinese sentiment analysis, and then integrate these segmentations, based on both discrete and neural models. Experimental results show that different segmentations do affect the final performances, and the integrated models can achieve better performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.sighan.org/bakeoff2005/.

  2. 2.

    http://word2vec.googlecode.com/.

References

  1. Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T.: Target-dependent twitter sentiment classification. In: Proceedings of the 49th ACL, pp. 151–160 (2011)

    Google Scholar 

  2. Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012)

    Article  Google Scholar 

  3. Fu, G., He, Y., Song, J., Wang, C.: Improving Chinese sentence polarity classification via opinion paraphrasing. In: CLP 2014, p. 35 (2014)

    Google Scholar 

  4. Vo, D.-T., Zhang, Y.: Target-dependent twitter sentiment classification with rich automatic features. In: Proceedings of the 29th IJCAI, pp. 1347–1353 (2015)

    Google Scholar 

  5. Wang, S., Manning, C.D.: Baselines and bigrams: simple, good sentiment and topic classification. In: Proceedings of the 50th ACL: Short Papers, vol. 2, pp. 90–94 (2012)

    Google Scholar 

  6. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2), 1–135 (2008)

    Article  Google Scholar 

  7. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the EMNLP, pp. 79–86, July 2002

    Google Scholar 

  8. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: Proceedings of the 49th ACL: HLT, vol. 1, pp. 142–150 (2011)

    Google Scholar 

  9. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)

    Article  Google Scholar 

  10. Feldman, R.: Techniques and applications for sentiment analysis. Commun. ACM 56(4), 82–89 (2013)

    Article  Google Scholar 

  11. Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific word embedding for twitter sentiment classification. In: ACL, pp. 1555–1565 (2014)

    Google Scholar 

  12. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: ACL (System Demonstrations), pp. 55–60 (2014)

    Google Scholar 

  13. Che, W., Li, Z., Liu, T.: LTP: a Chinese language technology platform. In: Proceedings of the 23rd COLING: Demonstrations, pp. 13–16 (2010)

    Google Scholar 

  14. Li, Z., Sun, M.: Punctuation as implicit annotations for Chinese word segmentation. Comput. Linguist. 35(4), 505–512 (2009)

    Article  Google Scholar 

  15. Tseng, H., Chang, P., Andrew, G., Jurafsky, D., Manning, C.: A conditional random field word segmenter for SIGHAN bakeoff 2005. In: Proceedings of the Fourth SIGHAN Workshop, pp. 168–171 (2005)

    Google Scholar 

  16. Turney, P.D.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th ACL, pp. 417–424 (2002)

    Google Scholar 

  17. Fu, G., Wang, X.: Chinese sentence-level sentiment classification based on fuzzy sets. In: Proceedings of the 23rd COLING: Posters, pp. 312–319 (2010)

    Google Scholar 

  18. Hu, X., Tang, J., Gao, H., Liu, H.: Unsupervised sentiment analysis with emotional signals. In: Proceedings of the 22nd WWW, pp. 607–618 (2013)

    Google Scholar 

  19. Yang, B., Cardie, C.: Context-aware learning for sentence-level sentiment analysis with posterior regularization. In: ACL (1), pp. 325–335 (2014)

    Google Scholar 

  20. Ren, Y., Zhang, Y., Zhang, M., Ji, D.: Context-sensitive twitter sentiment classification using neural network. In: AAAI (2016)

    Google Scholar 

  21. dos Santos, C.N., Gatti, M.: Deep convolutional neural networks for sentiment analysis of short texts. In: COLING, pp. 69–78 (2014)

    Google Scholar 

  22. Wang, X., Liu, Y., Sun, C., Wang, B., Wang, X.: Predicting polarities of tweets by composing word embeddings with long short-term memory. In: Proceedings of the ACL and the IJCNLP, vol. 1, pp. 1343–1353 (2015)

    Google Scholar 

  23. Iyyer, M., Enns, P., Boyd-Graber, J.L., Resnik, P.: Political ideology detection using recursive neural networks. In: ACL (1), pp. 1113–1122 (2014)

    Google Scholar 

  24. Wan, X.: Co-training for cross-lingual sentiment classification. In: Proceedings of ACL and IJCNLP, vol. 1, pp. 235–243 (2009)

    Google Scholar 

  25. Yessenalina, A., Yue, Y., Cardie, C.: Multi-level structured models for document-level sentiment classification. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, Cambridge, MA, pp. 1046–1056. Association for Computational Linguistics, October 2010

    Google Scholar 

  26. Tang, D., Wei, F., Qin, B., Dong, L., Liu, T., Zhou, M.: A joint segmentation and classification framework for sentiment analysis. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, pp. 477–487. Association for Computational Linguistics, October 2014

    Google Scholar 

  27. Ling, W., Dyer, C., Black, A.W., Trancoso, I., Fermandez, R., Amir, S., Marujo, L., Luis, T.: Finding function in form: compositional character models for open vocabulary word representation. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, pp. 1520–1530. Association for Computational Linguistics, September 2015

    Google Scholar 

  28. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  29. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5), 602–610 (2005)

    Article  Google Scholar 

  30. Zhou, J., Xu, W.: End-to-end learning of semantic role labeling using recurrent neural networks. In: Proceedings of the 53rd ACL and the 7th IJCNLP (Long Papers), vol. 1, Beijing, China, pp. 1127–1137, July 2015

    Google Scholar 

  31. Wang, D., Nyberg, E.: A long short-term memory model for answer sentence selection in question answering. In: Proceedings of the 53rd ACL and the 7th IJCNLP (Short Papers), vol. 2, Beijing, China, pp. 707–712, July 2015

    Google Scholar 

  32. Liu, P., Joty, S., Meng, H.: Fine-grained opinion mining with recurrent neural networks and word embeddings. In: Proceedings of the EMNLP, Lisbon, Portugal, pp. 1433–1443, September 2015

    Google Scholar 

  33. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. JMLR 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Zhang, Y., Clark, S.: Syntactic processing using the generalized perceptron and beam search. Comput. Linguist. 37(1), 105–151 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their constructive comments, which helped to improve the paper. This study was supported by Natural Science Foundation of Heilongjiang Province under Grant No. F2016036, National Natural Science Foundation of China under Grant No. 61170148, and the Returned Scholar Foundation of Heilongjiang Province, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohong Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Pan, D., Zhang, M., Fu, G. (2016). Chinese Sentiment Analysis Exploiting Heterogeneous Segmentations. In: Sun, M., Huang, X., Lin, H., Liu, Z., Liu, Y. (eds) Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. NLP-NABD CCL 2016 2016. Lecture Notes in Computer Science(), vol 10035. Springer, Cham. https://doi.org/10.1007/978-3-319-47674-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47674-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47673-5

  • Online ISBN: 978-3-319-47674-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics