[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

To Explore or to Exploit? Learning Humans’ Behaviour to Maximize Interactions with Them

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9991))

Abstract

Assume a robot operating in a public space (e.g., a library, a museum) and serving visitors as a companion, a guide or an information stand. To do that, the robot has to interact with humans, which presumes that it actively searches for humans in order to interact with them. This paper addresses the problem how to plan robot’s actions in order to maximize the number of such interactions in the case human behavior is not known in advance. We formulate this problem as the exploration/exploitation problem and design several strategies for the robot. The main contribution of the paper than lies in evaluation and comparison of the designed strategies on two datasets. The evaluation shows interesting properties of the strategies, which are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Exploration, exploitation, mixture or artificial utility can be used as the utility in a particular node.

  2. 2.

    The original dataset [4] contains one year-long collection of measurements from 50 different sensors spread over the apartment and we filtered this data to contain information about presence of the person in particular rooms and at particular times.

  3. 3.

    In fact, the person was not present in the flat occasionally or was visited by another people.

References

  1. Amigoni, F., Caglioti, V.: An information-based exploration strategy for environment mapping with mobile robots. Robot. Auton. Syst. 58(5), 684–699 (2010)

    Article  Google Scholar 

  2. Basilico, N., Amigoni, F.: Exploration strategies based on multi-criteria decision making for an autonomous mobile robot. In: Proceedings of 4th European Conference on Mobile Robots, pp. 259–264. KoREMA (2009)

    Google Scholar 

  3. Basilico, N., Amigoni, F.: Exploration strategies based on multi-criteria decision making for searching environments in rescue operations. Auton. Robot. 31(4), 401–417 (2011)

    Article  Google Scholar 

  4. Cook, D.J.: Learning setting-generalized activity models for smart spaces. IEEE Intell. Syst. 2010(99), 1 (2010)

    Google Scholar 

  5. Gerling, K., Hebesberger, D., Dondrup, C., Körtner, T., Hanheide, M.: Robot deployment in long-term care. Zeitschrift für Gerontologie und Geriatrie 1–9 (2016). http://dx.doi.org/10.1007/s00391-016-1065-6

  6. Gonzalez-Banos, H.H., Latombe, J.C.: Navigation strategies for exploring indoor environments. Int. J. Robot. Res. 21(10–11), 829–848 (2002)

    Article  Google Scholar 

  7. Hebesberger, D., Dondrup, C., Koertner, T., Gisinger, C., Pripfl, J.: Lessons learned from the deployment of a long-term autonomous robot as companion in physical therapy for older adults with dementia: a mixed methods study. In: 11th ACM/IEEE International Conference on Human Robot Interaction, HRI 2016, pp. 27–34. IEEE Press, Piscataway (2016). http://dl.acm.org/citation.cfm?id=2906831.2906838

  8. Hollinger, G., Djugash, J., Singh, S.: Coordinated search in cluttered environments using range from multiple robots. In: Laugier, C., Siegwart, R. (eds.) Field and Service Robotics. STAR, vol. 42, pp. 433–442. Springer, Berlin Heidelberg (2008)

    Chapter  Google Scholar 

  9. Koenig, S., Tovey, C., Halliburton, W.: Greedy mapping of terrain. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 4, pp. 3594–3599 (2001)

    Google Scholar 

  10. Koutsoupias, E., Papadimitriou, C., Yannakakis, M.: Searching a fixed graph. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 280–289. Springer, Heidelberg (1996). doi:10.1007/3-540-61440-0_135

    Chapter  Google Scholar 

  11. Krajník, T., Santos, J.M., Duckett, T.: Life-long spatio-temporal exploration of dynamic environments. In: 2015 European Conference on Mobile Robots (ECMR), pp. 1–8, September 2015

    Google Scholar 

  12. Krajník, T., Fentanes, J.P., Cielniak, G., Dondrup, C., Duckett, T.: Spectral analysis for long-term robotic mapping. In: 2014 IEEE International Conference on Robotics and Automation (ICRA) (2014)

    Google Scholar 

  13. Krajník, T., Fentanes, J.P., Mozos, O.M., Duckett, T., Ekekrantz, J., Hanheide, M.: Long-term topological localization for service robots in dynamic environments using spectral maps. In: International Conference on Intelligent Robots and Systems (IROS) (2014)

    Google Scholar 

  14. Krajník, T., Kulich, M., Mudrová, L., Ambrus, R., Duckett, T.: Where’s Waldo at time t? Using spatio-temporal models for mobile robot search. In: 2014 IEEE International Conference on Robotics and Automation (ICRA) (2015)

    Google Scholar 

  15. Kulich, M., Faigl, J., Přeučil, L.: On distance utility in the exploration task. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 4455–4460, May 2011

    Google Scholar 

  16. Kulich, M., Přeučil, L., Miranda Bront, J.: Single robot search for a stationary object in an unknown environment. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5830–5835, May 2014

    Google Scholar 

  17. Kulich, M., Miranda-Bront, J.J., Přeučil, L.: A meta-heuristic based goal-selection strategy for mobile robot search in an unknown environment. Comput. Oper. Res. (2016). ISSN 0305-0548, http://dx.doi.org/10.1016/j.cor.2016.04.029

  18. Makarenko, A.A., Williams, S.B., Bourgault, F., Durrant-Whyte, H.F.: An experiment in integrated exploration. In: IEEE/RSJ International Conference on Intelligent Robots and System, pp. 534–539. IEEE (2002)

    Google Scholar 

  19. Santos, J.M., Krajnik, T., Pulido Fentanes, J., Duckett, T.: Lifelong information-driven exploration to complete and refine 4D spatio-temporal maps. Robot. Autom. Lett. 1, 684–691 (2016)

    Article  Google Scholar 

  20. Sarmiento, A., Murrieta-Cid, R., Hutchinson, S.: A multi-robot strategy for rapidly searching a polygonal environment. In: Lemaître, C., Reyes, C.A., González, J.A. (eds.) IBERAMIA 2004. LNCS (LNAI), vol. 3315, pp. 484–493. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Tovar, B., Muñoz-Gómez, L., Murrieta-Cid, R., Alencastre-Miranda, M., Monroy, R., Hutchinson, S.: Planning exploration strategies for simultaneous localization and mapping. Robot. Auton. Syst. 54(4), 314–331 (2006)

    Article  Google Scholar 

  22. Tovey, C., Koenig, S.: Improved analysis of greedy mapping. In: 2003 Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2003), vols. 3 and 4, pp. 3251–3257, October 2003

    Google Scholar 

  23. Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 146–151. IEEE Computer Society Press (1997)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Technology Agency of the Czech Republic under the project no. TE01020197 “Centre for Applied Cybernetics” and by the EU ICT project 600623 ‘STRANDS’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Kulich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kulich, M., Krajník, T., Přeučil, L., Duckett, T. (2016). To Explore or to Exploit? Learning Humans’ Behaviour to Maximize Interactions with Them. In: Hodicky, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2016. Lecture Notes in Computer Science(), vol 9991. Springer, Cham. https://doi.org/10.1007/978-3-319-47605-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47605-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47604-9

  • Online ISBN: 978-3-319-47605-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics