[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Cyclone Performance Prediction Using Linear Regression Techniques

  • Conference paper
  • First Online:
International Joint Conference SOCO’16-CISIS’16-ICEUTE’16 (SOCO 2016, CISIS 2016, ICEUTE 2016)

Abstract

A wide range of industrial fields utilize cyclone separators and so, evaluating their performance according to different materials and varying operating conditions could contribute useful information and could also save these industries significant amounts of capital. This study models cyclone performance using linear regression techniques and low errors were obtained in comparison with the values obtained from real experiments. Linear regression and generalized linear regression techniques, simple and enhanced with Gradient Boosting techniques, were used to create linear models with low errors of approximately 0.83 % in cyclone performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao, B., Shen, H., Kang, Y.: Development of a symmetrical spiral inlet to improve cyclone separation performance. Powder Technol. 145(1), 47–50 (2004)

    Article  Google Scholar 

  2. Elsayed, K., Lacor, C.: CFD modeling and multi-objective optimization of cyclone geometry using desirability function, artificial neural networks and genetic algorithms. Appl. Math. Model. 37(8), 5680–5704 (2013)

    Article  Google Scholar 

  3. Elsayed, K., Lacor, C.: Multi-objective surrogate based optimization of gas cyclones using support vector machines and CFD simulations. In: Application of Surrogate-Based Global Optimization to Aerodynamic Design, pp. 59–72. Springer, Heidelberg (2016)

    Google Scholar 

  4. Lostado-Lorza, R. Corral-Bobadilla, M., Escribano-Garcia, R., Fernandez Martinez, R., Alfonso Cendon, J.: XV Congreso Internacional de Ingeniería de Proyectos, Huesca, pp. 2219–2229 (2011)

    Google Scholar 

  5. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, Hoboken (2004)

    Book  MATH  Google Scholar 

  6. Avci, A., Karagoz, I.: Effects of flow and geometrical parameters on the collection efficiency in cyclone separators. J. Aerosol Sci. 34(7), 937–955 (2003)

    Article  Google Scholar 

  7. Gimbun, J., Chuah, T.G., Choong, T.S.Y., Fakhru’l-Razi, A.: Prediction of the effects of cone tip diameter on the cyclone performance. Aer. Sci. 36, 1056–1065 (2005)

    Article  Google Scholar 

  8. Chuah, T.G., Gimbun, J., Choong, T.S.Y.: A CFD study of the effect of cone dimensions on sampling aerocyclones performance and hydrodynamics. Powder Technol. 162, 126–132 (2006)

    Article  Google Scholar 

  9. Raoufi, A., Shams, M., Farzaneh, M., Ebrahimi, R.: Numerical simulation and optimization of fluid flow in cyclone vortex finder. Chem. Eng. Process. 47, 128–137 (2008)

    Article  Google Scholar 

  10. Leith, D., Licht, W.: The collection efficiency of cyclone type particle collectors a new theoretical approach. AIChE Symp. 68(126), 196–206 (1972)

    Google Scholar 

  11. Echeverri Londoño, C.A.: Diseño óptimo de ciclones. Rev. Ing. Univ. Medel. 5(09), 123–139 (2006). App. Mat. Modelling, 35, 1952–1968

    Google Scholar 

  12. Cortes, C., Gil, A.: Modeling the gas and particle flow inside cyclone separators. Prog. Energy Comb. Sci. 33, 409–452 (2007)

    Article  Google Scholar 

  13. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Technical Report, Department of Statistics, Sequoia Hall, Stanford University, Stanford California 94305 (1999)

    Google Scholar 

  14. Friedman, J.H.: Stochastic gradient boosting. Technical Report, Department of Statistics, Sequoia Hall, Stanford University, Stanford California 94305 (1999)

    Google Scholar 

  15. Wang, Z.: HingeBoost: ROC-based boost for classification and variable selection. Int. J. Biostat. 7(1), 1–30 (2011)

    Article  MathSciNet  Google Scholar 

  16. McCullagh, P., Nelder, J.A.: Generalized Linear Models. Chapman and Hall, London (1989)

    Book  MATH  Google Scholar 

  17. Dobson, A.J.: An Introduction to Generalized Linear Models. Chapman and Hall, London (1990)

    Book  MATH  Google Scholar 

  18. Hastie, T.J., Pregibon, D.: Generalized linear models. In: Chambers, J.M., Hastie, T.J. (eds.) Statistical Models in S. Wadsworth & Brooks/Cole, Pacific Grove (1992)

    Google Scholar 

  19. Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S. Springer, New York (2002)

    Book  MATH  Google Scholar 

  20. Fox, J.: Applied Regression Analysis and Generalized Linear Models, 3rd edn. McMaster University, SAGE Publications Inc, Thousand Oaks (2015)

    Google Scholar 

  21. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of the 13th International Conference on Machine Learning, San Francisco, CA, pp. 148–156 (1996)

    Google Scholar 

  22. Buehlmann, P.: Boosting for high-dimensional linear models. Ann. Stat. 34, 559–583 (2006)

    MathSciNet  Google Scholar 

  23. Buehlmann, P., Yu, B.: Boosting with the L2 loss: regression and classification. J. Am. Stat. Assoc. 98, 324–339 (2003)

    Article  Google Scholar 

  24. Buehlmann, P., Hothorn, T.: Boosting algorithms: regularization, prediction and model fitting. Stat. Sci. 22(4), 477–505 (2007)

    MathSciNet  MATH  Google Scholar 

  25. R development core team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2012). http://www.R-project.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Corral Bobadilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Corral Bobadilla, M., Fernandez Martinez, R., Lostado Lorza, R., Somovilla Gomez, F., Vergara Gonzalez, E.P. (2017). Cyclone Performance Prediction Using Linear Regression Techniques. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’16-CISIS’16-ICEUTE’16. SOCO CISIS ICEUTE 2016 2016 2016. Advances in Intelligent Systems and Computing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-319-47364-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47364-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47363-5

  • Online ISBN: 978-3-319-47364-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics