Abstract
A wide range of industrial fields utilize cyclone separators and so, evaluating their performance according to different materials and varying operating conditions could contribute useful information and could also save these industries significant amounts of capital. This study models cyclone performance using linear regression techniques and low errors were obtained in comparison with the values obtained from real experiments. Linear regression and generalized linear regression techniques, simple and enhanced with Gradient Boosting techniques, were used to create linear models with low errors of approximately 0.83 % in cyclone performance.
Similar content being viewed by others
References
Zhao, B., Shen, H., Kang, Y.: Development of a symmetrical spiral inlet to improve cyclone separation performance. Powder Technol. 145(1), 47–50 (2004)
Elsayed, K., Lacor, C.: CFD modeling and multi-objective optimization of cyclone geometry using desirability function, artificial neural networks and genetic algorithms. Appl. Math. Model. 37(8), 5680–5704 (2013)
Elsayed, K., Lacor, C.: Multi-objective surrogate based optimization of gas cyclones using support vector machines and CFD simulations. In: Application of Surrogate-Based Global Optimization to Aerodynamic Design, pp. 59–72. Springer, Heidelberg (2016)
Lostado-Lorza, R. Corral-Bobadilla, M., Escribano-Garcia, R., Fernandez Martinez, R., Alfonso Cendon, J.: XV Congreso Internacional de Ingeniería de Proyectos, Huesca, pp. 2219–2229 (2011)
Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, Hoboken (2004)
Avci, A., Karagoz, I.: Effects of flow and geometrical parameters on the collection efficiency in cyclone separators. J. Aerosol Sci. 34(7), 937–955 (2003)
Gimbun, J., Chuah, T.G., Choong, T.S.Y., Fakhru’l-Razi, A.: Prediction of the effects of cone tip diameter on the cyclone performance. Aer. Sci. 36, 1056–1065 (2005)
Chuah, T.G., Gimbun, J., Choong, T.S.Y.: A CFD study of the effect of cone dimensions on sampling aerocyclones performance and hydrodynamics. Powder Technol. 162, 126–132 (2006)
Raoufi, A., Shams, M., Farzaneh, M., Ebrahimi, R.: Numerical simulation and optimization of fluid flow in cyclone vortex finder. Chem. Eng. Process. 47, 128–137 (2008)
Leith, D., Licht, W.: The collection efficiency of cyclone type particle collectors a new theoretical approach. AIChE Symp. 68(126), 196–206 (1972)
Echeverri Londoño, C.A.: Diseño óptimo de ciclones. Rev. Ing. Univ. Medel. 5(09), 123–139 (2006). App. Mat. Modelling, 35, 1952–1968
Cortes, C., Gil, A.: Modeling the gas and particle flow inside cyclone separators. Prog. Energy Comb. Sci. 33, 409–452 (2007)
Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Technical Report, Department of Statistics, Sequoia Hall, Stanford University, Stanford California 94305 (1999)
Friedman, J.H.: Stochastic gradient boosting. Technical Report, Department of Statistics, Sequoia Hall, Stanford University, Stanford California 94305 (1999)
Wang, Z.: HingeBoost: ROC-based boost for classification and variable selection. Int. J. Biostat. 7(1), 1–30 (2011)
McCullagh, P., Nelder, J.A.: Generalized Linear Models. Chapman and Hall, London (1989)
Dobson, A.J.: An Introduction to Generalized Linear Models. Chapman and Hall, London (1990)
Hastie, T.J., Pregibon, D.: Generalized linear models. In: Chambers, J.M., Hastie, T.J. (eds.) Statistical Models in S. Wadsworth & Brooks/Cole, Pacific Grove (1992)
Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S. Springer, New York (2002)
Fox, J.: Applied Regression Analysis and Generalized Linear Models, 3rd edn. McMaster University, SAGE Publications Inc, Thousand Oaks (2015)
Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of the 13th International Conference on Machine Learning, San Francisco, CA, pp. 148–156 (1996)
Buehlmann, P.: Boosting for high-dimensional linear models. Ann. Stat. 34, 559–583 (2006)
Buehlmann, P., Yu, B.: Boosting with the L2 loss: regression and classification. J. Am. Stat. Assoc. 98, 324–339 (2003)
Buehlmann, P., Hothorn, T.: Boosting algorithms: regularization, prediction and model fitting. Stat. Sci. 22(4), 477–505 (2007)
R development core team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2012). http://www.R-project.org/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Corral Bobadilla, M., Fernandez Martinez, R., Lostado Lorza, R., Somovilla Gomez, F., Vergara Gonzalez, E.P. (2017). Cyclone Performance Prediction Using Linear Regression Techniques. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’16-CISIS’16-ICEUTE’16. SOCO CISIS ICEUTE 2016 2016 2016. Advances in Intelligent Systems and Computing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-319-47364-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-47364-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47363-5
Online ISBN: 978-3-319-47364-2
eBook Packages: EngineeringEngineering (R0)