[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Correctness-by-Construction and Post-hoc Verification: A Marriage of Convenience?

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation: Foundational Techniques (ISoLA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9952))

Included in the following conference series:

Abstract

Correctness-by-construction (CbC), traditionally based on weakest precondition semantics, and post-hoc verification (PhV) aspire to ensure functional correctness. We argue for a lightweight approach to CbC where lack of formal rigour increases productivity. In order to mitigate the risk of accidentally introducing errors during program construction, we propose to complement lightweight CbC with PhV. We introduce lightweight CbC by example and discuss strength and weaknesses of CbC and PhV and their combination, both conceptually and using a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Dijkstra-speak for ‘program statement’.

  2. 2.

    We could, of course, apply ever deeper levels of intuition and arrive at the best known algorithms, but we limit our example here to the simplest sorting algorithms.

  3. 3.

    Here, we have written the I in many places to emphasise where it must hold. In most algorithm presentations, it is only mentioned in the line preceding the loop, but the other proof obligations remain (in this case for \(S_3\) to re-establish the invariant).

  4. 4.

    Again, this is barring absurdities such as the length of A changing dynamically, which is precisely the difficulty in parallel programs, in which this may indeed happen.

  5. 5.

    http://www.misra.org.uk.

  6. 6.

    There are alternative notational conventions in the literature for total and partial correctness.

  7. 7.

    This is because both \(\textit{False}\implies \textit{True}\) and \(\textit{False}\implies \textit{False}\) evaluate to True,.

  8. 8.

    https://en.wikibooks.org/wiki/Algorithm_Implementation/Graphs/Maximum_flow/Edmonds-Karp.

References

  1. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley Longman Publishing Co. Inc., Boston (2000)

    Google Scholar 

  2. Hall, A., Chapman, R.: Correctness by construction: developing a commercial secure system. Softw. IEEE 19(1), 18–25 (2002)

    Article  Google Scholar 

  3. Beckert, B., Hähnle, R.: Reasoning and verification. IEEE Intell. Syst. 29(1), 20–29 (2014)

    Article  Google Scholar 

  4. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software: The KeY Approach. LNCS, vol. 4334. Springer, Heidelberg (2007)

    Google Scholar 

  5. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.: VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Havelund, K., Holzmann, G.J., Joshi, R., Bobaru, M. (eds.) NFM 2011. LNCS, vol. 6617, pp. 41–55. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Barnett, M., M. Leino, K.R., Schulte, W.: The Spec# programming system: an overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Filliâtre, J.-C., Marché, C.: The why/krakatoa/caduceus platform for deductive program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 173–177. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Upper Saddle River (1976)

    MATH  Google Scholar 

  9. Gries, D.: The Science of Programming. Springer, Heidelberg (1987)

    MATH  Google Scholar 

  10. Cohen, E.: Programming in the 1990s: An Introduction to the Calculation of Programs. Springer, Heidelberg (1990)

    Book  MATH  Google Scholar 

  11. Morgan, C.: Programming from Specifications, 2nd edn. Prentice Hall, Upper Saddle River (1994)

    MATH  Google Scholar 

  12. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Programming. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  13. Chapman, R.: Correctness by construction: a manifesto for high integrity software. In: Proceedings of the 10th Australian Workshop on Safety Critical Systems and Software. SCS 2005, vol. 55, pp. 43–46(2006)

    Google Scholar 

  14. Abrial, J.: Modeling in Event-B - System and Software Engineering. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  15. Méry, D., Monahan, R.: Transforming event B models into verified C# implementations. In: First International Workshop on Verification and Program Transformation, VPT 2013, Saint Petersburg, Russia, 12–13 July 2013, pp. 57–73 (2013)

    Google Scholar 

  16. Cheng, Z., Mery, D., Monahan, R.: On two friends for getting correct programs - automatically translating event-B specifications to recursive algorithms in Rodin. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 821–838. Springer, Heidelberg (2016)

    Google Scholar 

  17. Lamprecht, A., Margaria, T., Schaefer, I., Steffen, B.: Synthesis-based variability control: correctness by construction. In: Formal Methods for Components and Objects, 10th International Symposium, pp. 69–88. Revised Selected Papers (2011)

    Google Scholar 

  18. ter Beek, M., Reniers, M., de Vink, E.: Supervisory controller synthesis for product lines using CIF 3. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 856–873. Springer, Heidelberg (2016)

    Google Scholar 

  19. ter Beek, M., Carmona, J., Kleijn, J.: Conditions for compatibility of components - the case of masters and slaves. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 784–805. Springer, Heidelberg (2016)

    Google Scholar 

  20. Cleophas, L., Kourie, D.G., Pieterse, V., Schaefer, I., Watson, B.W.: Correctness-by-construction \(\wedge \) taxonomies \(\Rightarrow \) deep comprehension of algorithm families. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 766–783. Springer, Heidelberg (2016)

    Google Scholar 

  21. ter Beek, M., Hähnle, R., Schaefer, I.: Correctness-by-construction and post-hoc verification - friends or foes? In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 723–729. Springer, Heidelberg (2016)

    Google Scholar 

  22. Lagarias, J.C.: The 3x + 1 problem and its generalizations. IEEE Intell. Syst. 92(1), 3–23 (1985)

    MathSciNet  MATH  Google Scholar 

  23. Hoare, C.A.R.: Algorithm 64: quicksort. Commun. ACM 4(7), 321 (1961)

    Article  Google Scholar 

  24. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  25. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino, K.R.M., Poll, E.: An overview of JML tools and applications. Commun. ACM 7(3), 212–232 (2005)

    Google Scholar 

  26. Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L., Visser, E., Wachsmuth, G.: DSL Engineering - Designing, Implementing and Using Domain-Specific Languages (2013). dslbook.org

Download references

Acknowledgments

This work was partially supported by the DFG (German Research Foundation) under grant SCHA1635/2-2, and by the NRF (South African National Research Foundation) under grants 81606 and 93063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce W. Watson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Watson, B.W., Kourie, D.G., Schaefer, I., Cleophas, L. (2016). Correctness-by-Construction and Post-hoc Verification: A Marriage of Convenience?. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation: Foundational Techniques. ISoLA 2016. Lecture Notes in Computer Science(), vol 9952. Springer, Cham. https://doi.org/10.1007/978-3-319-47166-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47166-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47165-5

  • Online ISBN: 978-3-319-47166-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics