[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Cross Subject Mental Work Load Classification from Electroencephalographic Signals with Automatic Artifact Rejection and Muscle Pruning

  • Conference paper
  • First Online:
Brain Informatics and Health (BIH 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9919))

Included in the following conference series:

  • 1425 Accesses

Abstract

Purpose of this study was to understand the effect of automatic muscle pruning of electroencephalograph on cognitive work load prediction. Pruning was achieved using an automatic Independent Component Analysis (ICA) based component classification. Initially, raw data from EEG recording was used for prediction, this result was then compared with mental work load prediction results from muscle-pruned EEG data. This study used Support Vector Machine (SVM) with Linear Kernel for cognitive work load prediction from EEG data. Initial part of the study was to learn a classification model from the whole data, whereas the second part was to learn the model from a set of subjects and predict the mental work load for an unseen subject by the model. The experimental results show that an accuracy of nearly 100 % is possible with ICA and automatic pruning based pre-processing. Cross subject prediction significantly improved from a mean accuracy of 54 % to 69 % for an unseen subject with the pre-processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ball, T., Kern, M., Mutschler, I., Aertsen, A., Schulze-Bonhage, A.: Signal quality of simultaneously recorded invasive and non-invasive EEG. NeuroImage 46(3), 708–716 (2009)

    Article  Google Scholar 

  2. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Muller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Sig. Process. Mag. 25(1), 41–56 (2008)

    Article  Google Scholar 

  3. Delorme, A., Palmer, J., Onton, J., Oostenveld, R., Makeig, S.: Independent EEG sources are dipolar. PloS ONE 7(2), e30135 (2012)

    Article  Google Scholar 

  4. Domen, N., Mihelj, M., Marko, M.: A survey of methods for data fusion and system adaptation using autonomic nervous system responses in physiological computing. interact. Comput. 24(3), 154–172 (2012)

    Article  Google Scholar 

  5. Fitzgibbon, S., DeLosAngeles, D., Lewis, T., Powers, D., Grummett, T., Whitham, E., Ward, L., Willoughby, J., Pope, K.: Automatic determination of EMG-contaminated components and validation of independent component analysis using EEG during pharmacologic paralysis. Clin. Neurophysiol. 127, 1781–1793 (2015)

    Article  Google Scholar 

  6. Gevins, A., Smith, M.E.: Neurophysiological measures of cognitive workload during human-computer interaction. Theor. Issues Ergon. Sci. 4(1–2), 113–131 (2003)

    Article  Google Scholar 

  7. Grummett, T.S., Fitzgibbon, S.P., Lewis, T.W., et al.: Constitutive spectral EEG peaks in the gamma range: suppressed by sleep, reduced by mental activity and resistant to sensory stimulation. Front. Hum. Neurosci. 8(927) (2014)

    Google Scholar 

  8. Heger, D., Putze, F., Schultz, T.: Online workload recognition from EEG data during cognitive tests and human-machine interaction. In: Dillmann, R., Beyerer, J., Hanebeck, U.D., Schultz, T. (eds.) KI 2010. LNCS (LNAI), vol. 6359, pp. 410–417. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16111-7_47

    Chapter  Google Scholar 

  9. Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector classification (2003)

    Google Scholar 

  10. Kohlmorgen, J., Dornhege, G., Braun, M.L., Blankertz, B., Müller, K.R., Curio, G., Hagemann, K., Bruns, A., Schrauf, M., Kincses, W.E.: Improving human performance in a real operating environment through real-time mental workload detection. In: Towards Brain-Computer Interfacing. The MIT press (2006)

    Google Scholar 

  11. Kothe, C.A., Makeig, S.: Bcilab: a platform for brain-computer interface development. J. Neural Eng. 10(5), 056014 (2013)

    Article  Google Scholar 

  12. Kubler, A., Mattia, D.: Chapter 14 - Brain computer interface based solutions for end-users with severe communication disorders. In: Laureys, S., Gosseries, O., Tononi, G. (eds.) The Neurology of Conciousness, 2nd edn, pp. 217–240. Academic Press, San Diego (2016)

    Chapter  Google Scholar 

  13. Niedermeyer, E., da Silva, F.H.L.: Electroencephalography: Basic Principles, Clinical Applications and Related Fields. Williams and Wilkins, Lippincott, Philadelphia (1993)

    Google Scholar 

  14. Putze, F., Jarvis, J.P., Schultz, T.: Multimodal recognition of cognitive workload for multitasking in the car. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 3748–3751 (2010)

    Google Scholar 

  15. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM J. Res. Develop. 3, 210–229 (1959)

    Article  MathSciNet  Google Scholar 

  16. Teplan, M.: Fundamentals of EEG measurement. Measur. Sci. Rev. 2(2), 1–11 (2002)

    Google Scholar 

  17. Wang, Z., Hope, R.M., Wang, Z., Ji, Q., Gray, W.D.: Cross-subject workload classification with a hierarchical Bayes model. NeuroImage 59(1), 64–69 (2012)

    Article  Google Scholar 

  18. Welch, P.D.: The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967)

    Article  MathSciNet  Google Scholar 

  19. Whitham, E.M., Pope, K.J., Fitzgibbon, S.P., Lewis, T., Clark, C.R., Loveless, S., Broberg, M., Wallace, A., DeLosAngeles, D., Lillie, P., et al.: Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20Hz are contaminated by EMG. Clin. Neurophysiol. 118(8), 1877–1888 (2007)

    Article  Google Scholar 

  20. Wilson, G.F.: An analysis of mental workload in pilots during flight using multiple psychophysiological measures. Int. J. Aviat. Psychol. 12(1), 3–18 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajeev Kunjan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kunjan, S. et al. (2016). Cross Subject Mental Work Load Classification from Electroencephalographic Signals with Automatic Artifact Rejection and Muscle Pruning. In: Ascoli, G., Hawrylycz, M., Ali, H., Khazanchi, D., Shi, Y. (eds) Brain Informatics and Health. BIH 2016. Lecture Notes in Computer Science(), vol 9919. Springer, Cham. https://doi.org/10.1007/978-3-319-47103-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47103-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47102-0

  • Online ISBN: 978-3-319-47103-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics