[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Soundly Proving B Method Formulæ Using Typed Sequent Calculus

  • Conference paper
  • First Online:
Theoretical Aspects of Computing – ICTAC 2016 (ICTAC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9965))

Included in the following conference series:

  • 473 Accesses

Abstract

The B Method is a formal method mainly used in the railway industry to specify and develop safety-critical software. To guarantee the consistency of a B project, one decisive challenge is to show correct a large amount of proof obligations, which are mathematical formulæ expressed in a classical set theory extended with a specific type system. To improve automated theorem proving in the B Method, we propose to use a first-order sequent calculus extended with a polymorphic type system, which is in particular the output proof-format of the tableau-based automated theorem prover Zenon. After stating some modifications of the B syntax and defining a sound elimination of comprehension sets, we propose a translation of B formulæ into a polymorphic first-order logic format. Then, we introduce the typed sequent calculus used by Zenon, and show that Zenon proofs can be translated to proofs of the initial B formulæ in the B proof system.

This work is supported by the BWare project (ANR-12-INSE-0010) funded by the INS programme of the French National Research Agency (ANR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  2. Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic and polymorphic types. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 493–507. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7_34

    Chapter  Google Scholar 

  3. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: shepherd your herd of provers. In: International Workshop on Intermediate Verification Languages (Boogie) (2011)

    Google Scholar 

  4. Bodeveix, J.-P., Filali, M.: Type synthesis in B and the translation of B to PVS. In: Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp. 350–369. Springer, Heidelberg (2002). doi:10.1007/3-540-45648-1_18

    Chapter  Google Scholar 

  5. Boespflug, M., Carbonneaux, Q., Hermant, O.: The \(\lambda \varPi \)-calculus modulo as a universal proof language. In: Proof Exchange for Theorem Proving (PxTP) (2012)

    Google Scholar 

  6. Bonichon, R., Delahaye, D., Doligez, D.: Zenon: an extensible automated theorem prover producing checkable proofs. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 151–165. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75560-9_13

    Chapter  Google Scholar 

  7. Bury, G., Delahaye, D., Doligez, D., Halmagrand, P., Hermant, O.: Automated deduction in the B set theory using typed proof search and deduction modulo. In: LPAR 20 : 20th International Conference on Logic for Programming, Artificial Intelligence and Reasoning, Suva, Fiji (2015)

    Google Scholar 

  8. Cauderlier, R., Halmagrand, P.: Checking Zenon modulo proofs in Dedukti. In: Fourth Workshop on Proof eXchange for Theorem Proving (PxTP), Berlin, Germany (2015)

    Google Scholar 

  9. Delahaye, D., Doligez, D., Gilbert, F., Halmagrand, P., Hermant, O.: Zenon modulo: when achilles outruns the tortoise using deduction modulo. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 274–290. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5_20

    Chapter  Google Scholar 

  10. Delahaye, D., Dubois, C., Marché, C., Mentré, D.: The Bware project: building a proof platform for the automated verification of B proof obligations. In: Ameur, Y.A., Schewe, K.-S. (eds.) Abstract State Machines, Alloy, B, VDM, and Z (ABZ). LNCS, vol. 8477, pp. 290–293. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  11. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving Modulo. J. Autom. Reasoning (JAR) 31, 33–72 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dowek, G., Miquel, A.: Cut elimination for zermelo set theory. Archive for Mathematical Logic. Springer, Heidelberg (2007, submitted)

    Google Scholar 

  13. Jacquel, M., Berkani, K., Delahaye, D., Dubois, C.: Verifying B proof rules using deep embedding and automated theorem proving. Softw. Eng. Formal Methods 7041, 253–268 (2011)

    Article  MATH  Google Scholar 

  14. Jaeger, É., Dubois, C.: Why would you trust B? In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 288–302. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75560-9_22

    Chapter  Google Scholar 

  15. Kleene, S.C.: Permutability of inferences in Gentzens calculi LK and LJ. In: Bulletin Of The American Mathematical Society, vol. 57, pp. 485–485. Amer Mathematical Soc, Providence (1951)

    Google Scholar 

  16. Mentré, D., Marché, C., Filliâtre, J.-C., Asuka, M.: Discharging proof obligations from Atelier B using multiple automated provers. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 238–251. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30885-7_17

    Chapter  Google Scholar 

  17. Schmalz, M.: Formalizing the logic of event-B. Ph.D. thesis, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 20516, 2012 (2012)

    Google Scholar 

  18. ClearSy: Atelier B 4.1 (2013). http://www.atelierb.eu/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Halmagrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Halmagrand, P. (2016). Soundly Proving B Method Formulæ Using Typed Sequent Calculus. In: Sampaio, A., Wang, F. (eds) Theoretical Aspects of Computing – ICTAC 2016. ICTAC 2016. Lecture Notes in Computer Science(), vol 9965. Springer, Cham. https://doi.org/10.1007/978-3-319-46750-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46750-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46749-8

  • Online ISBN: 978-3-319-46750-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics