Abstract
Active Energy Image (AEI) is an efficient template for gait recognition. However, the AEI is short of the temporal information. In this paper, we present a novel gait template, named Enhanced Active Color Image (EACI). The EACI is extract the difference of two interval in each gait frame, followed by calculating the width of that difference image and then mapping into RGB space with the ratio, describing the relative position, and composition them to a single EACI. To prove the validity of the EACI, we employ experiments on the USF HUMANID database. Experiment result shows that our EACI describes the dynamic, static and temporal information better. Compared with other published gait recognition approaches, we achieve competitive performance in gait recognition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2006)
Guan, Y., Li, C.-T., Roli, F.: On reducing the effect of covariate factors in gait recognition: a classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 37(7), 1521–1528 (2015)
Lee, L., Grimson, W.E.L.: Gait analysis for recognition and classification. In: 2002 Proceedings of Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 148–155 (2002)
Yam, C.Y., Nixon, M.S., Carter, J.N.: Automated person recognition by walking and running via model-based approaches. Pattern Recogn. 37(5), 1057–1072 (2004)
Bashir, K., Xiang, T., Gong, S.: Gait recognition using gait entropy image. In: 3rd International Conference on Crime Detection and Prevention (ICDP 2009), pp. 1–6. IET (2009)
Wang, C., Zhang, J., Pu, J., Yuan, X., Wang, L.: Chrono-gait image: a novel temporal template for gait recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 257–270. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15549-9_19
Wang, J., She, M., Nahavandi, S., Kouzani, A.: A review of vision-based gait recognition methods for human identification. In: International Conference on Digital Image Computing: Techniques and Applications, Dicta 2010, Sydney, Australia, pp. 320–327, 1–3 December 2010
Chen, C., Liang, J., Zhao, H., Hu, H., Tian, J.: Frame difference energy image for gait recognition with incomplete silhouettes. Pattern Recogn. Lett. 30(11), 977–984 (2009)
Zhang, E., Zhao, Y., Xiong, W.: Active energy image plus 2DLPP for gait recognition. Sig. Process. 90(7), 2295–2302 (2010)
Yang, Y., Tu, D., Li, G.: Gait recognition using flow histogram energy image. In: International Conference on Pattern Recognition, pp. 444–449 (2014)
Yang, X., Zhou, Y., Zhang, T., Shu, G., Yang, J.: Gait recognition based on dynamic region analysis. Sig. Process. 88(9), 2350–2356 (2008)
Bashir, K., Xiang, T., Gong, S.: Gait recognition without subject cooperation. Pattern Recogn. Lett. 31(13), 2052–2060 (2010)
Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The humanID gait challenge problem: data sets, performance, and analysis. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 162–177 (2005)
Pontzer, H., Raichlen, D.A., Lieberman, D.E.: Control and function of arm swing in human walking and running. J. Exp. Biol. 212(4), 523–534 (2009)
Kale, A., Sundaresan, A., Rajagopalan, A.N., Cuntoor, N.P.: Identification of humans using gait. IEEE Trans. Image Process. Publ. IEEE Sig. Process. Soc. 13(9), 1163–1173 (2004)
Xu, D., Yan, S., Tao, D., Zhang, L., Li, X., Zhang, H.J.: Human gait recognition with matrix representation. IEEE Trans. Circ. Syst. Video Technol. 16(7), 896–903 (2006)
Liu, Y., Zhang, J., Wang, C., Wang, L.: Multiple HOG templates for gait recognition. pp. 2930–2933 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Shang, Y., Song, Y., Zhang, Y. (2016). Enhanced Active Color Image for Gait Recognition. In: You, Z., et al. Biometric Recognition. CCBR 2016. Lecture Notes in Computer Science(), vol 9967. Springer, Cham. https://doi.org/10.1007/978-3-319-46654-5_51
Download citation
DOI: https://doi.org/10.1007/978-3-319-46654-5_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46653-8
Online ISBN: 978-3-319-46654-5
eBook Packages: Computer ScienceComputer Science (R0)