Abstract
The limiting factor for quantitative analysis of Markov decision processes (MDP) against specifications given in linear temporal logic (LTL) is the size of the generated product. As recently shown, a special subclass of limit-deterministic Büchi automata (LDBA) can replace deterministic Rabin automata in quantitative probabilistic model checking algorithms. We present an extension of PRISM for LTL model checking of MDP using LDBA. While existing algorithms can be used only with minimal changes, the new approach takes advantage of the special structure and the smaller size of the obtained LDBA to speed up the model checking. We demonstrate the speed up experimentally by a comparison with other approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Babiak, T., Blahoudek, F., Křetínský, M., Strejček, J.: Effective translation of LTL to deterministic Rabin automata: beyond the (F, G)-fragment. In: ATVA, pp. 24–39 (2013)
Babiak, T., Křetínský, M., Řehák, V., Strejček, J.: LTL to Büchi automata translation: fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28756-5_8
Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
Blahoudek, F., Heizmann, M., Schewe, S., Strejček, J., Tsai, M.-H.: Complementing semi-deterministic Büchi automata. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 770–787. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9_49
Blahoudek, F., Křetínský, M., Strejček, J.: Comparison of LTL to deterministic Rabin automata translators. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 164–172. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5_12
Chatterjee, K., Gaiser, A., Křetínský, J.: Automata with generalized Rabin pairs for probabilistic model checking and LTL synthesis. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 559–575. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_37
Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)
Couvreur, J.-M.: On-the-fly verification of linear temporal logic. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer, Heidelberg (1999). doi:10.1007/3-540-48119-2_16
Couvreur, J.-M., Saheb, N., Sutre, G.: An optimal automata approach to LTL model checking of probabilistic systems. In: Vardi, M.Y., Voronkov, A. (eds.) LPAR 2003. LNCS (LNAI), vol. 2850, pp. 361–375. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39813-4_26
Daniele, M., Giunchiglia, F., Vardi, M.Y.: Improved automata generation for linear temporal logic. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 249–260. Springer, Heidelberg (1999). doi:10.1007/3-540-48683-6_23
Duret-Lutz, A.: Manipulating LTL formulas using Spot 1.0. In: Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 442–445. Springer, Heidelberg (2013). doi:10.1007/978-3-319-02444-8_31
Duret-Lutz, A.: LTL translation improvements in Spot 1.0. IJCCBS 5(1–2), 31–54 (2014)
Esparza, J., Křetínský, J.: From LTL to deterministic automata: a safraless compositional approach. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 192–208. Springer, Heidelberg (2014). doi:10.1007/978-3-319-08867-9_13
Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–168. Springer, Heidelberg (2000). doi:10.1007/3-540-44618-4_13
Fritz, C.: Constructing Büchi automata from linear temporal logic using simulation relations for alternating Büchi automata. In: Ibarra, O.H., Dang, Z. (eds.) CIAA 2003. LNCS, vol. 2759, pp. 35–48. Springer, Heidelberg (2003). doi:10.1007/3-540-45089-0_5
Gaiser, A., Křetínský, J., Esparza, J.: Rabinizer: small deterministic automata for LTL(F, G). In: ATVA, pp. 72–76 (2012)
Gastin, P., Oddoux, D.: Fast LTL to Büchi automatatranslation. In: CAV, pp. 53–65 (2001). http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/
Giannakopoulou, D., Lerda, F.: From states to transitions: improving translation of LTL formulae to Büchi automata. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 308–326. Springer, Heidelberg (2002). doi:10.1007/3-540-36135-9_20
Hahn, E.M., Li, G., Schewe, S., Turrini, A., Zhang, L.: Lazyprobabilistic model checking without determinisation. In: CONCUR. LIPIcs, vol. 42, pp. 354–367 (2015)
Henzinger, T.A., Piterman, N.: Solving games without determinization. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 395–410. Springer, Heidelberg (2006). doi:10.1007/11874683_26
Kini, D., Viswanathan, M.: Limit deterministic and probabilistic automata for LTL \(\setminus \) GU. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 628–642. Springer, Heidelberg (2015)
Klein, J.: ltl2dstar - LTL to deterministic Streett and Rabinautomata. http://www.ltl2dstar.de/
Klein, J., Müller, D., Baier, C., Klüppelholz, S.: Are good-for-games automata good for probabilistic model checking? In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 453–465. Springer, Heidelberg (2014). doi:10.1007/978-3-319-04921-2_37
Komárková, Z., Křetínský, J.: Rabinizer 3: safraless translation of LTL to small deterministic automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 235–241. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11936-6_17
Křetínský, J., Ledesma-Garza, R.: Rabinizer 2: small deterministic automata for LTL\(_{\setminus \mathbf{GU}}\). In: ATVA, pp. 446–450 (2013)
Křetínský, J., Esparza, J.: Deterministic automata for the (F, G)-fragment of LTL. In: CAV, pp. 7–22 (2012)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1_47
Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In: QEST, pp. 203–204 (2012)
Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. In: LICS, pp. 255–264 (2006)
Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
Pnueli, A., Zuck, L.D.: Verification of multiprocess probabilistic protocols. Distrib. Comput. 1(1), 53–72 (1986). doi:10.1007/BF01843570
Safra, S.: On the complexity of omega-automata. In: FOCS, pp. 319–327 (1988)
Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In: Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 167–181. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00596-1_13
Sickert, S.: MoChiBA. https://www7.in.tum.de/~sickert/projects/mochiba/
Sickert, S., Esparza, J., Jaax, S., Křetínský, J.: Limit-deterministic Büchi automata for linear temporal logic. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 312–332. Springer, Heidelberg (2016). doi:10.1007/978-3-319-41540-6_17
Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000). doi:10.1007/10722167_21
Tsai, M.-H., Tsay, Y.-K., Hwang, Y.-S.: GOAL for games, omega-automata, and logics. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 883–889. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_62
Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification (preliminary report). In: LICS, pp. 332–344 (1986)
Acknowledgements
This work is partially funded by the DFG Research Training Group “PUMA: Programm- und Modell-Analyse” (GRK 1480) and by the Czech Science Foundation, grant No. 15-17564S.
The authors want to thank Ernst Moritz Hahn and Andrea Turrini for providing a private version of IscasMC to compare to and for assistance in using it.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Sickert, S., Křetínský, J. (2016). MoChiBA: Probabilistic LTL Model Checking Using Limit-Deterministic Büchi Automata. In: Artho, C., Legay, A., Peled, D. (eds) Automated Technology for Verification and Analysis. ATVA 2016. Lecture Notes in Computer Science(), vol 9938. Springer, Cham. https://doi.org/10.1007/978-3-319-46520-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-46520-3_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46519-7
Online ISBN: 978-3-319-46520-3
eBook Packages: Computer ScienceComputer Science (R0)