[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Robotic Home Assistant with Memory Aid Functionality

  • Conference paper
  • First Online:
KI 2016: Advances in Artificial Intelligence (KI 2016)

Abstract

We present the robotic system IRMA (Interactive Robotic Memory Aid) that assists humans in their search for misplaced belongings within a natural home-like environment. Our stand-alone system integrates state-of-the-art approaches in a novel manner to achieve a seamless and intuitive human-robot interaction. IRMA directs its gaze toward the speaker and understands the person’s verbal instructions independent of specific grammatical constructions. It determines the positions of relevant objects and navigates collision-free within the environment. In addition, IRMA produces natural language descriptions for the objects’ positions by using furniture as reference points. To evaluate IRMA’s usefulness, a user study with 20 participants has been conducted. IRMA achieves an overall user satisfaction score of 4.05 and a perceived accuracy rating of 4.15 on a scale from 1–5 with 5 being the best.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A video showing the robot’s performance is presented in the video session of the IEEE RO-MAN 2016 conference [29].

  2. 2.

    Our dataset is available at https://figshare.com/s/d949d3410df8db468f77 [30].

References

  1. Barla, A., Odone, F., Verri, A.: Histogram intersection kernel for image classification. In: International Conference on Image Processing (ICIP), vol. 3, pp. 513–516. IEEE (2003)

    Google Scholar 

  2. Bartneck, C., Kulić, D., Croft, E., Zoghbi, S.: Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int. J. Social Robot. 1(1), 71–81 (2008)

    Article  Google Scholar 

  3. Beer, J.M., Smarr, C.A., Chen, T.L., Prakash, A., Mitzner, T.L., Kemp, C.C., Rogers, W.A.: The domesticated robot: design guidelines for assisting older adults to age in place. In: Annual ACM/IEEE International Conference on Human-Robot Interaction, HRI 2012, pp. 335–342. ACM/IEEE (2012)

    Google Scholar 

  4. Bohren, J., Cousins, S.: The SMACH high-level executive. IEEE Robot. Autom. Mag. 17(4), 18–20 (2010)

    Article  Google Scholar 

  5. Bohren, J., Rusu, R.B., Jones, E.G., Marder-Eppstein, E., Pantofaru, C., Wise, M., Mösenlechner, L., Meeussen, W., Holzer, S.: Towards autonomous robotic butlers: lessons learned with the PR2. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5568–5575. IEEE (2011)

    Google Scholar 

  6. Brooke, J.: SUS - a quick and dirty usability scale. In: Usability Evaluation in Industry, pp. 189–194. Taylor & Francis (1996)

    Google Scholar 

  7. Brooke, J.: SUS: a retrospective. J. Usability Stud. 8(2), 29–40 (2013)

    Google Scholar 

  8. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)

    Article  Google Scholar 

  9. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  10. Deyle, T., Reynolds, M.S., Kemp, C.C.: Finding and navigating to household objects with UHF RFID tags by optimizing RF signal strength. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2579–2586, September 2014

    Google Scholar 

  11. Fasola, J., Mataric, M.: A socially assistive robot exercise coach for the elderly. J. Hum.-Robot Interact. 2(2), 3–32 (2013)

    Article  Google Scholar 

  12. Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 524–531. IEEE (2005)

    Google Scholar 

  13. Foster, M.E., Gaschler, A., Giuliani, M., Isard, A., Pateraki, M., Petrick, R.P.: Two people walk into a bar: dynamic multi-party social interaction with a robot agent. In: ACM International Conference on Multimodal Interaction, pp. 3–10. ICMI, ACM (2012)

    Google Scholar 

  14. Fox, D.: Adapting the sample size in particle filters through KLD-sampling. Int. J. Robot. Res. 22(12), 985–1003 (2003)

    Article  Google Scholar 

  15. Graf, B., Reiser, U., Hägele, M., Mauz, K., Klein, P.: Robotic home assistant care-O-bot 3 - product vision and innovation platform. In: IEEE Workshop on Advanced Robotics and its Social Impacts, pp. 139–144. IEEE (2009)

    Google Scholar 

  16. Guo, B., Imai, M.: Home-explorer: search, localize and manage the physical artifacts indoors. In: International Conference on Advanced Information Networking and Applications (AINA), pp. 378–385. IEEE (2007)

    Google Scholar 

  17. Hinaut, X., Petit, M., Pointeau, G., Dominey, P.F.: Exploring the acquisition and production of grammatical constructions through human-robot interaction with echo state networks. Front. Neurorobotics 8, 16 (2014)

    Article  Google Scholar 

  18. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 2169–2178. IEEE (2006)

    Google Scholar 

  19. Levenshtein, V.: Binary codes capable of correcting deletions, insertions and reversals. Sov. Phys. Dokl. 10, 707 (1966)

    MathSciNet  MATH  Google Scholar 

  20. Likert, R.: A Technique for the Measurement of Attitudes. Archives of Psychology (1932)

    Google Scholar 

  21. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  22. Murray, J., Wermter, S., Erwin, H.: Auditory robotic tracking of sound sources using hybrid cross-correlation and recurrent networks. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3554–3559. IEEE (2005)

    Google Scholar 

  23. Palmer, M., Gildea, D., Xue, N.: Semantic role labeling. Synth. Lect. Hum. Lang. Technol. 3(1), 1–103 (2010)

    Article  Google Scholar 

  24. Parisi, G.I., Bauer, J., Strahl, E., Wermter, S.: A multi-modal approach for assistive humanoid robots. In: Workshop on Multimodal and Semantics for Robotics Systems (MuSRobS), vol. 1540, pp. 10–15. CEUR Workshop Proceedings (2015)

    Google Scholar 

  25. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 6 (2009)

    Google Scholar 

  26. Rosenthal-von der Pütten, A.M., Krämer, N.C.: How design characteristics of robots determine evaluation and uncanny valley related responses. Comput. Hum. Behav. 36, 422–439 (2014)

    Article  Google Scholar 

  27. Twiefel, J., Baumann, T., Heinrich, S., Wermter, S.: Improving domain-independent cloud-based speech recognition with domain-dependent phonetic post-processing. In: AAAI Conference on Artificial Intelligence, vol. 28, pp. 1529–1535. AAAI Press (2014)

    Google Scholar 

  28. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 511–518. IEEE (2001)

    Google Scholar 

  29. Wieser, I., Toprak, S., Grenzing, A., Hinz, T., Auddy, S., Karaoğuz, E.C., Chandran, A., Remmels, M., El Shinawi, A., Josifovski, J., Vankadara, L.C., Ul Wahab, F., Bahnemiri, A.M., Sahu, D., Heinrich, S., Navarro-Guerrero, N., Strahl, E., Twiefel, J., Wermter, S.: A Robotic Home Assistant with Memory Aid Functionality, video. IEEE RO-MAN 2016. https://www.informatik.uni-hamburg.de/wtm/videos/VideoSubmission_UniHamburgWTM_RO-MAN2016.mp.4. Accepted May 2016

  30. Wieser, I., Toprak, S., Grenzing, A., Hinz, T., Auddy, S., Karaoğuz, E.C., Chandran, A., Remmels, M., El Shinawi, A., Josifovski, J., Vankadara, L.C., Ul Wahab, F., Bahnemiri, A.M., Sahu, D., Heinrich, S., Navarro-Guerrero, N., Strahl, E., Twiefel, J., Wermter, S.: Dataset for “A Robotic Home Assistant with Memory Aid Functionality”, May 2016. https://figshare.com/s/d949d3410df8db468f77

Download references

Acknowledgments

The authors gratefully acknowledge partial support from the German Research Foundation DFG under project CML (TRR 169), the European Union under project SECURE (No 642667), and the Hamburg Landesforschungsförderungsprojekt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Wieser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Wieser, I. et al. (2016). A Robotic Home Assistant with Memory Aid Functionality. In: Friedrich, G., Helmert, M., Wotawa, F. (eds) KI 2016: Advances in Artificial Intelligence. KI 2016. Lecture Notes in Computer Science(), vol 9904. Springer, Cham. https://doi.org/10.1007/978-3-319-46073-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46073-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46072-7

  • Online ISBN: 978-3-319-46073-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics