[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Refinement of a Q-matrix with an Ensemble Technique Based on Multi-label Classification Algorithms

  • Conference paper
  • First Online:
Adaptive and Adaptable Learning (EC-TEL 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9891))

Included in the following conference series:

  • 6446 Accesses

Abstract

There are numerous algorithms and tools to help an expert map exercises and tasks to underlying skills. The last decade has witnessed a wealth of data driven approaches aiming to refine expert-defined mappings of tasks to skill. This refinement can be seen as a classification problem: for each possible mapping of task to skill, the classifier has to decide whether the expert’s advice is correct, or incorrect. Whereas most algorithms are working at the level of individual mappings, we introduce an approach based on a multi-label classification algorithm that is trained on the mapping of a task to all skills simultaneously. The approach is shown to outperform the existing task to skill mapping refinement techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

All links were last followed on June 20, 2016.

  1. Barnes, T.: Novel derivation and application of skill matrices: the Q-matrix method. In: Romero, C., Ventura, S., Pechenizkiy, M., Baker, R.S.J.D. (eds.) Handbook on Educational Data Mining, pp. 159–172. CRC Press, Boca Raton (2010)

    Chapter  Google Scholar 

  2. Chiu, C.Y.: Statistical refinement of the Q-matrix in cognitive diagnosis. Appl. Psychol. Measur. 37(8), 598–618 (2013)

    Article  Google Scholar 

  3. de la Torre, J.: An empirically based method of Q-matrix validation for the DINA model: development and applications. J. Educ. Measur. 45(4), 343–362 (2008)

    Article  Google Scholar 

  4. Nižnan, J., Pelánek, R., Řihák, J.: Mapping problems to skills combining expert opinion and student data. In: Hliněný, P., Dvořák, Z., Jaroš, J., Kofroň, J., Kořenek, J., Matula, P., Pala, K. (eds.) MEMICS 2014. LNCS, vol. 8934, pp. 113–124. Springer, Heidelberg (2014)

    Google Scholar 

  5. Desmarais, M., Beheshti, B., Xu, P.: The refinement of a Q-matrix: assessing methods to validate tasks to skills mapping. In: Educational Data Mining (2014)

    Google Scholar 

  6. Desmarais, M.C., Xu, P., Beheshti, B.: Combining techniques to refine item to skills Q-matrices with a partition tree. In: Educational Data Mining (2015)

    Google Scholar 

  7. Chiu, C.Y., Douglas, J.: A nonparametric approach to cognitive diagnosis by proximity to ideal response patterns. J. Classif. 30(2), 225–250 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. de la Torre, J.: Dina model and parameter estimation: a didactic. J. Educ. Behav. Stat. 34(1), 115–130 (2009)

    Article  Google Scholar 

  9. Desmarais, M.C., Naceur, R.: A matrix factorization method for mapping items to skills and for enhancing expert-based Q-matrices. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS, vol. 7926, pp. 441–450. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333–359 (2011)

    Article  MathSciNet  Google Scholar 

  11. Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multi-label classification. IEEE Trans. Knowl. Data Eng. 23(7), 1079–1089 (2011)

    Article  Google Scholar 

  12. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer, Heidelberg (2010)

    Google Scholar 

  13. Tatsuoka, K.K.: Rule space: an approach for dealing with misconceptions based on item response theory. J. Educ. Measur. 20(4), 345–354 (1983)

    Article  Google Scholar 

  14. Henson, R.A., Templin, J.L., Willse, J.T.: Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika 74(2), 191–210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Robitzsch, A., Kiefer, T., George, A.C., Uenlue, A.: CDM: Cognitive Diagnosis Modeling, R package version 4.5-0 (2015)

    Google Scholar 

  16. Xu, P., Desmarais, M.C.: Boosted decision tree for Q-matrix refinement. In: 9th International Conference on Educational Data Mining, 6 June–2 July 2016, Raleigh, NC, USA (2016, to appear)

    Google Scholar 

  17. Matsuda, N., Furukawa, T., Bier, N., Faloutsos, C.: Machine beats experts: automatic discovery of skill models for data-driven online course refinement. Educ. Data Min. 2014, 101–108 (2014)

    Google Scholar 

  18. González-Brenes, J.P.: Modeling skill acquisition over time with sequence and topic modeling. In: AISTATS (2015)

    Google Scholar 

  19. Aleven, V., Koedinger, K.R.: Knowledge Component (KC) approaches to learner modeling. In: Design Recommendations for Intelligent Tutoring Systems, p. 165 (2013)

    Google Scholar 

Download references

Acknowledgements

This work is funded by the NSERC Discovery funding awarded to the second author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sein Minn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Minn, S., Desmarais, M.C., Fu, S. (2016). Refinement of a Q-matrix with an Ensemble Technique Based on Multi-label Classification Algorithms. In: Verbert, K., Sharples, M., Klobučar, T. (eds) Adaptive and Adaptable Learning. EC-TEL 2016. Lecture Notes in Computer Science(), vol 9891. Springer, Cham. https://doi.org/10.1007/978-3-319-45153-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45153-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45152-7

  • Online ISBN: 978-3-319-45153-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics