[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Boundary Property for Upper Domination

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9843))

Included in the following conference series:

Abstract

An upper dominating set in a graph is a minimal (with respect to set inclusion) dominating set of maximum cardinality. The problem of finding an upper dominating set is generally NP-hard, but can be solved in polynomial time in some restricted graph classes, such as \(P_4\)-free graphs or \(2K_2\)-free graphs. For classes defined by finitely many forbidden induced subgraphs, the boundary separating difficult instances of the problem from polynomially solvable ones consists of the so called boundary classes. However, none of such classes has been identified so far for the upper dominating set problem. In the present paper, we discover the first boundary class for this problem.

V. Lozin—The author gratefully acknowledges support from EPSRC, grant EP/L020408/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AbouEisha, H., Hussain, S., Lozin, V., Monnot, J., Ries, B.: A dichotomy for upper domination in monogenic classes. In: Zhang, Z., Wu, L., Xu, W., Du, D.-Z. (eds.) COCOA 2014. LNCS, vol. 8881, pp. 258–267. Springer, Heidelberg (2014)

    Google Scholar 

  2. Alekseev, V.E.: On easy and hard hereditary classes of graphs with respect to the independent set problem. Discrete Appl. Math. 132, 17–26 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alekseev, V.E., Korobitsyn, D.V., Lozin, V.V.: Boundary classes of graphs for the dominating set problem. Discrete Math. 285, 1–6 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alekseev, V.E., Boliac, R., Korobitsyn, D.V., Lozin, V.V.: NP-hard graph problems and boundary classes of graphs. Theor. Comput. Sci. 389, 219–236 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheston, G.A., Fricke, G., Hedetniemi, S.T., Jacobs, D.P.: On the computational complexity of upper fractional domination. Discrete Appl. Math. 27(3), 195–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cockayne, E.J., Favaron, O., Payan, C., Thomason, A.G.: Contributions to the theory of domination, independence and irredundance in graphs. Discrete Math. 33(3), 249–258 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theor. Comput. Syst. 33(2), 125–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Courcelle, B., Olariu, S.: Upper bounds to the clique-width of a graph. Discrete Appl. Math. 101, 77–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hare, E.O., Hedetniemi, S.T., Laskar, R.C., Peters, K., Wimer, T.: Linear-time computability of combinatorial problems on generalized-series-parallel graphs. In: Johnson, D.S., et al. (eds.) Discrete Algorithms and Complexity, pp. 437–457. Academic Press, New York (1987)

    Chapter  Google Scholar 

  10. Jacobson, M.S., Peters, K.: Chordal graphs and upper irredundance, upper domination and independence. Discrete Math. 86(1–3), 59–69 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kamiński, M., Lozin, V., Milanič, M.: Recent developments on graphs of bounded clique-width. Discrete Appl. Math. 157, 2747–2761 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Korobitsyn, D.V.: On the complexity of determining the domination number in monogenic classes of graphs. Diskretnaya Matematika 2(3), 90–96 (1990). (in Russian, translation in Discrete Math. Appl. 2(2), 191–199 (1992))

    MathSciNet  MATH  Google Scholar 

  13. Korpelainen, N., Lozin, V.V., Malyshev, D.S., Tiskin, A.: Boundary properties of graphs for algorithmic graph problems. Theor. Comput. Sci. 412, 3545–3554 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Korpelainen, N., Lozin, V., Razgon, I.: Boundary properties of well-quasi-ordered sets of graphs. Order 30, 723–735 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lozin, V.V.: Boundary classes of planar graphs. Comb. Probab. Comput. 17, 287–295 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lozin, V., Milanič, M.: Critical properties of graphs of bounded clique-width. Discrete Math. 313, 1035–1044 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lozin, V., Purcell, C.: Boundary properties of the satisfiability problems. Inf. Process. Lett. 113, 313–317 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lozin, V., Rautenbach, D.: On the band-, tree- and clique-width of graphs with bounded vertex degree. SIAM J. Discrete Math. 18, 195–206 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lozin, V., Zamaraev, V.: Boundary properties of factorial classes of graphs. J. Graph Theor. 78, 207–218 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Murphy, O.J.: Computing independent sets in graphs with large girth. Discrete Appl. Math. 35, 167–170 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Lozin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

AbouEisha, H., Hussain, S., Lozin, V., Monnot, J., Ries, B., Zamaraev, V. (2016). A Boundary Property for Upper Domination. In: Mäkinen, V., Puglisi, S., Salmela, L. (eds) Combinatorial Algorithms. IWOCA 2016. Lecture Notes in Computer Science(), vol 9843. Springer, Cham. https://doi.org/10.1007/978-3-319-44543-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44543-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44542-7

  • Online ISBN: 978-3-319-44543-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics