[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Line Patterns Formed by Cellular Automata Agents

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9863))

Included in the following conference series:

Abstract

Considered is a 2D cellular automaton with moving agents. Each cell contains a particle with a certain spin/color that can be turned by an agent. Four colors are used. The objective is to align the spins in parallel along horizontal and vertical lines, in order to form long orthogonal “line patterns”. The quality of a line pattern is measured by a degree of order computed by counting matching 3 x 3 patterns. Additional markers are used and signals between agents are introduced in order to improve the task efficiency. The agents’ behavior is controlled by a finite state machine (FSM). An agent can perform 128 actions altogether as combinations of moving, turning, color changing, marker setting and signaling. It reacts on its own state and on the sensed colors, markers and signals. For a given set of n x n fields, near optimal FSM were evolved by a genetic algorithm. The evolved agents are capable of forming line patterns with a limited degree of order. The scalability of two FSM against a varying number of agents is studied as well as the efficiency gain through the newly introduced signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation. Birkäuser, Basel (2005)

    MATH  Google Scholar 

  2. Shi, D., He, P., Lian, J., Chaud, X., Bud’ko, S.L., Beaugnon, E., Wang, L.M., Ewing, R.C., Tournier, R.: Magnetic alignment of carbon nanofibers in polymer composites and anisotropy of mechanical properties. J. App. Phys. 97, 064312 (2005)

    Article  Google Scholar 

  3. Itoh, M., Takahira, M., Yatagai, T.: Spatial arrangement of small particles by imaging laser trapping system. Opt. Rev. 5(1), 55–58 (1998)

    Article  Google Scholar 

  4. Jiang, Y., Narushima, T., Okamoto, H.: Nonlinear optical effects in trapping nanoparticles with femtosecond pulses. Nat. Phys. 6, 1005–1009 (2010)

    Article  Google Scholar 

  5. Roberts, Jr., G.: X-ray laser explores how to write data with light. National Accelerator Laboratory, 19 March 2013. https://www6.slac.stanford.edu/news

  6. Press, D., Ladd, T.D., Zhang, B., Yamamoto, Y.: Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008)

    Article  Google Scholar 

  7. Hoffmann, R.: How agents can form a specific pattern. In: Wçs, J., Sirakoulis, G., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 660–669. Springer, Heidelberg (2014)

    Google Scholar 

  8. Hoffmann, R.: Cellular automata agents form path patterns effectively. Acta Phys. Pol. B Proc. Suppl. 9(1), 63–75 (2016)

    Article  Google Scholar 

  9. Halbach, M., Hoffmann, R., Both, L.: Optimal 6-state algorithms for the behavior of several moving creatures. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 571–581. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Ediger, P., Hoffmann, R.: Optimizing the creature’s rule for all-to-all communication. In: Adamatzky, A., Alonso-Sanz, R., Lawniczak, A., (eds.) Automata-2008: Theory and Applications of Cellular Automata, pp. 398–412 (2008)

    Google Scholar 

  11. Ediger, P., Hoffmann, R.: Solving all-to-all communication with CA agents more effectively with flags. In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 182–193. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Hoffmann, R., Désérable, D.: All-to-all communication with cellular automata agents in 2D grids. J. Supercomp. 69(1), 70–80 (2014)

    Article  Google Scholar 

  13. Ediger, P., Hoffmann, R.: CA models for target searching agents. Elec. Notes Theor. Comp. Sci. 252, 41–54 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ediger, P., Hoffmann, R., Désérable, D.: Routing in the triangular grid with evolved agents. J. Cell. Automata 7(1), 47–65 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Ediger, P., Hoffmann, R., Désérable, D.: Rectangular vs triangular routing with evolved agents. J. Cell. Automata 8(1–2), 73–89 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Komann, M., Mainka, A., Fey, D.: Comparison of evolving uniform, non-uniform cellular automaton, and genetic programming for centroid detection with hardware agents. In: Malyshkin, V. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 432–441. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Mesot, B., Sanchez, E., Peña, C.-A., Perez-Uribe, A.: Artificial Life VIII. SOS++: Finding Smart Behaviors Using Learning and Evolution. MIT Press, Cambridge (2002)

    Google Scholar 

  18. Blum, M., Sakoda, W.J.: On the capability of finite automata in 2 and 3 dimensional space. In: SFCS 1977, pp. 147–161 (1977)

    Google Scholar 

  19. Bonabeau, E.: From classical models of morphogenesis to agent-based models of pattern formation. Artif. Life 3(3), 191–211 (1997)

    Article  Google Scholar 

  20. Hamann, H.: Pattern Formation as a Transient Phenomenon in the Nonlinear Dynamics of a Multi-agent System. MATHMOD, Vienna (2009)

    Google Scholar 

  21. Nagpal, R.: Programmable pattern-formation and scale-independence. In: Minai, A.A., Bar-Yam, Y. (eds.) Unifying Themes in Complex Systems IV: Proceedings of the Fourth International Conference on Complex Systems, pp. 275–282. Springer Berlin Heidelberg, Berlin, Heidelberg (2008). http://dx.doi.org/10.1007/978-3-540-73849-7_31

  22. Yamins, D., Nagpal, R.: Automated global-to-local programming in 1-D spatial multi-agent systems. In: Proceedings of 7th International Conference AAMAS, pp. 615–622 (2008)

    Google Scholar 

  23. Bandini, S., Vanneschi, L., Wuensche, A., Shehata, A.B.: A neuro-genetic framework for pattern recognition in complex systems. Fund. Inf. 87(2), 207–226 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Hoffmann, R.: The GCA-w massively parallel model. In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 194–206. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Hoffmann, R.: Rotor-routing algorithms described by CA-w. Acta Phys. Pol. B Proc. Suppl. 5(1), 53–67 (2012)

    Article  Google Scholar 

  26. Hoffmann, R., Désérable, D.: Routing by cellular automata agents in the triangular lattice. In: Sirakoulis, G., Adamatzky, A. (eds.) Robots and Lattice Automata, Emergence, Complexity and Computation, vol. 13, pp. 117–147. Springer, Switzerland (2015)

    Google Scholar 

  27. Hardy, J., Pomeau, Y., de Pazzis, O.: Time evolution of a two-dimensional classical lattice system. Phys. Rev. Lett. 31(5), 276–279 (1973)

    Article  Google Scholar 

  28. Achasova, S., Bandman, O., Markova, V., Piskunov, S.: Parallel Substitution Algorithm - Theory and Application. World Scientific, Singapore (1994)

    Book  MATH  Google Scholar 

  29. Bouré, O., Fatès, N., Chevrier, V.: Probing robustness of cellular automata through variations of asynchronous updating. Nat. Comp. 11(4), 553–564 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bandini, S., Bonomi, A., Vizzari, G.: An analysis of different types and effects of asynchronicity in cellular automata update schemes. Nat. Comput. 11(2), 277–287 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hoffmann, R., Désérable, D. (2016). Line Patterns Formed by Cellular Automata Agents. In: El Yacoubi, S., Wąs, J., Bandini, S. (eds) Cellular Automata. ACRI 2016. Lecture Notes in Computer Science(), vol 9863. Springer, Cham. https://doi.org/10.1007/978-3-319-44365-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44365-2_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44364-5

  • Online ISBN: 978-3-319-44365-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics