Abstract
We face the complex problem of timely, accurate and mutually satisfactory mediation between job offers and suitable applicant profiles by means of semantic processing techniques. In fact, this problem has become a major challenge for all public and private recruitment agencies around the world as well as for employers and job seekers. It is widely agreed that smart algorithms for automatically matching, learning, and querying job offers and candidate profiles will provide a key technology of high importance and impact and will help to counter the lack of skilled labor and/or appropriate job positions for unemployed people. Additionally, such a framework can support global matching aiming at finding an optimal allocation of job seekers to available jobs, which is relevant for independent employment agencies, e.g. in order to reduce unemployment.
The research reported in this paper was supported by the Austrian Forschungsforderungsgesellschaft (FFG) for the Bridge project Accurate and Efficient Profile Matching in Knowledge Bases (ACEPROM) under contract [FFG: 841284]. The research reported in this paper has been supported by the Austrian Ministry for Transport, Innovation and Technology, the Federal Ministry of Science, Research and Economy, and the Province of Upper Austria in the frame of the COMET center SCCH [FFG: 844597].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bizer, C., Heese, R., Mochol, M., Oldakowski, R., Tolksdorf, R., Eckstein, R.: The impact of semantic web technologies on job recruitment processes. Wirtschaftsinformatik 2005, pp. 1367–1382 (2005)
Bradley, K., Smyth, B.: Personalized information ordering: a case study in online recruitment. Knowl. Based Syst. 16(5–6), 269–275 (2003)
Cali, A., Calvanese, D., Colucci, S., Di Noia, T., Donini, F.M.: A logic-based approach for matching user profiles. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3215, pp. 187–195. Springer, Heidelberg (2004)
Chakrabarti, K., Ortega-Binderberger, M., Mehrotra, S., Porkaew, K.: Evaluating refined queries in top-k retrieval systems. IEEE Trans. Knowl. Data Eng. 16(2), 256–270 (2004)
Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F.M., Mongiello, M., Mottola, M.: A formal approach to ontology-based semantic match of skills descriptions. J. UCS 9(12), 1437–1454 (2003)
Faliagka, E., Tsakalidis, A.K., Tzimas, G.: An integrated E-recruitment system for automated personality mining and applicant ranking. Internet Res. 22(5), 551–568 (2012)
Farber, F., Weitzel, T., Keim, T.: An automated recommendation approach toselection in personnel recruitment. In: AMCIS 2003, p. 302 (2003)
Garcia Sanchez, F., Martinez-Bejar, R., Contreras, L., Fernandez-Breis, J.T., Castellanos Nieves, D.: An ontology-based intelligent system for recruitment. Expert Syst. Appl. 31(2), 248–263 (2006)
Chaves-Gonzalez, J.M., Martinez-Gil, J.: Evolutionary algorithm based on different semantic similarity functions for synonym recognition in the biomedical domain. Knowl. Based Syst. 37, 62–69 (2013)
Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in relational databases. VLDB J. 13(3), 207–221 (2004)
Joachims, T.: The value of user feedback. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, p. 6. Springer, Heidelberg (2011)
Kessler, R., Bechet, N., Roche, M., Torres-Moreno, J.M., El-Beze, M.: A hybrid approach to managing job offers and candidates. Inf. Process. Manage. 48(6), 1124–1135 (2012)
Kuokka, D., Harada, L.: Integrating information via matchmaking. J. Intell. Inf. Syst. 6(2/3), 261–279 (1996)
Lv, Y., Zhai, C.X.: A log-logistic model-based interpretation of TF normalization of BM25. In: Baeza-Yates, R., de Vries, A.P., Zaragoza, H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.) ECIR 2012. LNCS, vol. 7224, pp. 244–255. Springer, Heidelberg (2012)
Malinowski, J., Keim, T., Wendt, O., Weitzel, T.: Matching people, jobs: a bilateral recommendation approach. In: HICSS 2006 (2006)
Martinez-Gil, J., Aldana-Montes, J.F.: Reverse ontology matching. SIGMOD Rec. 39(4), 5–11 (2010)
Martinez-Gil, J., Aldana-Montes, J.F.: Evaluation of two heuristic approaches to solve the ontology meta-matching problem. Knowl. Inf. Syst. 26(2), 225–247 (2011)
Martinez-Gil, J.: An overview of knowledge management techniques for e-recruitment. JIKM 13(2), 1450014 (2014)
Martinez-Gil, J.: Automated knowledge base management: a survey. Comput. Sci. Rev. 18, 1–9 (2015)
Mylopoulos, J., Brodie, M.L.: Knowledge bases and databases: current trends and future directions. In: Karagiannis, D. (ed.) IS/KI 1990 and KI-WS 1990. LNCS, vol. 474, pp. 153–180. Springer, Heidelberg (1991)
Meo, P., Quattrone, G., Terracina, G., Ursino, D.: An XML-based multiagent system for supporting online recruitment services. IEEE Trans. Syst. Man Cybern. Part A 37(4), 464–480 (2007)
Mochol, M., Wache, H., Nixon, L.J.B.: Improving the accuracy of job search with semantic techniques. In: Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 301–313. Springer, Heidelberg (2007)
Paoletti, A.L., Martinez-Gil, J., Schewe, K.-D.: Extending knowledge-based profile matching in the human resources domain. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9262, pp. 21–35. Springer, Heidelberg (2015)
Rácz, G., Sali, A., Schewe, K.-D.: Semantic matching strategies for job recruitment: a comparison of new and known approaches. In: Gyssens, M., et al. (eds.) FoIKS 2016. LNCS, vol. 9616, pp. 149–168. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30024-5_9
Robertson, S.E., Walker, S., Hancock-Beaulieu, M.: Experimentation as a way of life: okapi at TREC. Inf. Process. Manage. 36(1), 95–108 (2000)
Soliman, M.A., Ilyas, I.F., Ben-David, S.: Supporting ranking queries on uncertain and incomplete data. VLDB J. 19(4), 477–501 (2010)
Straccia, U., Tinelli, E., Colucci, S., Di Noia, T., Di Sciascio, E.: A system for retrieving top-k candidates to job positions. In: Description Logics 2009 (2009)
Theobald, M., Weikum, G., Schenkel, R.: Top-k query evaluation with probabilistic guarantees. In: VLDB, pp. 648–659 (2011)
Thielsch, M.T., Traumer, L., Pytlik, L.: E-recruiting and fairness: the applicant’s point of view. Inf. Technol. Manage. (ITM) 13(2), 59–67 (2012)
Tinelli, E., Cascone, A., Ruta, M., Di Noia, T., Di Sciascio, E., Donini, F.: An innovative semantic-based skill management system exploiting standard SQL. In: ICEIS (2), pp. 224–229 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Martinez-Gil, J., Paoletti, A.L., Schewe, KD. (2016). A Smart Approach for Matching, Learning and Querying Information from the Human Resources Domain. In: Ivanović, M., et al. New Trends in Databases and Information Systems. ADBIS 2016. Communications in Computer and Information Science, vol 637. Springer, Cham. https://doi.org/10.1007/978-3-319-44066-8_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-44066-8_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44065-1
Online ISBN: 978-3-319-44066-8
eBook Packages: Computer ScienceComputer Science (R0)