[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Smart Approach for Matching, Learning and Querying Information from the Human Resources Domain

  • Conference paper
  • First Online:
New Trends in Databases and Information Systems (ADBIS 2016)

Abstract

We face the complex problem of timely, accurate and mutually satisfactory mediation between job offers and suitable applicant profiles by means of semantic processing techniques. In fact, this problem has become a major challenge for all public and private recruitment agencies around the world as well as for employers and job seekers. It is widely agreed that smart algorithms for automatically matching, learning, and querying job offers and candidate profiles will provide a key technology of high importance and impact and will help to counter the lack of skilled labor and/or appropriate job positions for unemployed people. Additionally, such a framework can support global matching aiming at finding an optimal allocation of job seekers to available jobs, which is relevant for independent employment agencies, e.g. in order to reduce unemployment.

The research reported in this paper was supported by the Austrian Forschungsforderungsgesellschaft (FFG) for the Bridge project Accurate and Efficient Profile Matching in Knowledge Bases (ACEPROM) under contract [FFG: 841284]. The research reported in this paper has been supported by the Austrian Ministry for Transport, Innovation and Technology, the Federal Ministry of Science, Research and Economy, and the Province of Upper Austria in the frame of the COMET center SCCH [FFG: 844597].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.disco-tools.eu.

  2. 2.

    http://www.ilo.org/public/english/bureau/stat/isco/isco08/index.htm.

  3. 3.

    http://www.uis.unesco.org/Education/Pages/international-standard-classification-of-education.aspx.

References

  1. Bizer, C., Heese, R., Mochol, M., Oldakowski, R., Tolksdorf, R., Eckstein, R.: The impact of semantic web technologies on job recruitment processes. Wirtschaftsinformatik 2005, pp. 1367–1382 (2005)

    Google Scholar 

  2. Bradley, K., Smyth, B.: Personalized information ordering: a case study in online recruitment. Knowl. Based Syst. 16(5–6), 269–275 (2003)

    Article  MATH  Google Scholar 

  3. Cali, A., Calvanese, D., Colucci, S., Di Noia, T., Donini, F.M.: A logic-based approach for matching user profiles. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3215, pp. 187–195. Springer, Heidelberg (2004)

    Google Scholar 

  4. Chakrabarti, K., Ortega-Binderberger, M., Mehrotra, S., Porkaew, K.: Evaluating refined queries in top-k retrieval systems. IEEE Trans. Knowl. Data Eng. 16(2), 256–270 (2004)

    Article  Google Scholar 

  5. Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F.M., Mongiello, M., Mottola, M.: A formal approach to ontology-based semantic match of skills descriptions. J. UCS 9(12), 1437–1454 (2003)

    Google Scholar 

  6. Faliagka, E., Tsakalidis, A.K., Tzimas, G.: An integrated E-recruitment system for automated personality mining and applicant ranking. Internet Res. 22(5), 551–568 (2012)

    Article  Google Scholar 

  7. Farber, F., Weitzel, T., Keim, T.: An automated recommendation approach toselection in personnel recruitment. In: AMCIS 2003, p. 302 (2003)

    Google Scholar 

  8. Garcia Sanchez, F., Martinez-Bejar, R., Contreras, L., Fernandez-Breis, J.T., Castellanos Nieves, D.: An ontology-based intelligent system for recruitment. Expert Syst. Appl. 31(2), 248–263 (2006)

    Article  Google Scholar 

  9. Chaves-Gonzalez, J.M., Martinez-Gil, J.: Evolutionary algorithm based on different semantic similarity functions for synonym recognition in the biomedical domain. Knowl. Based Syst. 37, 62–69 (2013)

    Article  Google Scholar 

  10. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in relational databases. VLDB J. 13(3), 207–221 (2004)

    Article  Google Scholar 

  11. Joachims, T.: The value of user feedback. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, p. 6. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Kessler, R., Bechet, N., Roche, M., Torres-Moreno, J.M., El-Beze, M.: A hybrid approach to managing job offers and candidates. Inf. Process. Manage. 48(6), 1124–1135 (2012)

    Article  Google Scholar 

  13. Kuokka, D., Harada, L.: Integrating information via matchmaking. J. Intell. Inf. Syst. 6(2/3), 261–279 (1996)

    Article  Google Scholar 

  14. Lv, Y., Zhai, C.X.: A log-logistic model-based interpretation of TF normalization of BM25. In: Baeza-Yates, R., de Vries, A.P., Zaragoza, H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.) ECIR 2012. LNCS, vol. 7224, pp. 244–255. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Malinowski, J., Keim, T., Wendt, O., Weitzel, T.: Matching people, jobs: a bilateral recommendation approach. In: HICSS 2006 (2006)

    Google Scholar 

  16. Martinez-Gil, J., Aldana-Montes, J.F.: Reverse ontology matching. SIGMOD Rec. 39(4), 5–11 (2010)

    Article  Google Scholar 

  17. Martinez-Gil, J., Aldana-Montes, J.F.: Evaluation of two heuristic approaches to solve the ontology meta-matching problem. Knowl. Inf. Syst. 26(2), 225–247 (2011)

    Article  Google Scholar 

  18. Martinez-Gil, J.: An overview of knowledge management techniques for e-recruitment. JIKM 13(2), 1450014 (2014)

    Google Scholar 

  19. Martinez-Gil, J.: Automated knowledge base management: a survey. Comput. Sci. Rev. 18, 1–9 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mylopoulos, J., Brodie, M.L.: Knowledge bases and databases: current trends and future directions. In: Karagiannis, D. (ed.) IS/KI 1990 and KI-WS 1990. LNCS, vol. 474, pp. 153–180. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  21. Meo, P., Quattrone, G., Terracina, G., Ursino, D.: An XML-based multiagent system for supporting online recruitment services. IEEE Trans. Syst. Man Cybern. Part A 37(4), 464–480 (2007)

    Article  Google Scholar 

  22. Mochol, M., Wache, H., Nixon, L.J.B.: Improving the accuracy of job search with semantic techniques. In: Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 301–313. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Paoletti, A.L., Martinez-Gil, J., Schewe, K.-D.: Extending knowledge-based profile matching in the human resources domain. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9262, pp. 21–35. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  24. Rácz, G., Sali, A., Schewe, K.-D.: Semantic matching strategies for job recruitment: a comparison of new and known approaches. In: Gyssens, M., et al. (eds.) FoIKS 2016. LNCS, vol. 9616, pp. 149–168. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30024-5_9

    Chapter  Google Scholar 

  25. Robertson, S.E., Walker, S., Hancock-Beaulieu, M.: Experimentation as a way of life: okapi at TREC. Inf. Process. Manage. 36(1), 95–108 (2000)

    Article  Google Scholar 

  26. Soliman, M.A., Ilyas, I.F., Ben-David, S.: Supporting ranking queries on uncertain and incomplete data. VLDB J. 19(4), 477–501 (2010)

    Article  Google Scholar 

  27. Straccia, U., Tinelli, E., Colucci, S., Di Noia, T., Di Sciascio, E.: A system for retrieving top-k candidates to job positions. In: Description Logics 2009 (2009)

    Google Scholar 

  28. Theobald, M., Weikum, G., Schenkel, R.: Top-k query evaluation with probabilistic guarantees. In: VLDB, pp. 648–659 (2011)

    Google Scholar 

  29. Thielsch, M.T., Traumer, L., Pytlik, L.: E-recruiting and fairness: the applicant’s point of view. Inf. Technol. Manage. (ITM) 13(2), 59–67 (2012)

    Article  Google Scholar 

  30. Tinelli, E., Cascone, A., Ruta, M., Di Noia, T., Di Sciascio, E., Donini, F.: An innovative semantic-based skill management system exploiting standard SQL. In: ICEIS (2), pp. 224–229 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Martinez-Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Martinez-Gil, J., Paoletti, A.L., Schewe, KD. (2016). A Smart Approach for Matching, Learning and Querying Information from the Human Resources Domain. In: Ivanović, M., et al. New Trends in Databases and Information Systems. ADBIS 2016. Communications in Computer and Information Science, vol 637. Springer, Cham. https://doi.org/10.1007/978-3-319-44066-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44066-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44065-1

  • Online ISBN: 978-3-319-44066-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics