[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Quantifying the Complexity of Epileptic EEG

  • Conference paper
  • First Online:
Advances in Neural Networks (WIRN 2015)

Abstract

In this paper, the issue of automatic epileptic seizure detection is addressed, emphasizing how the huge amount of Electroencephalographic (EEG) data from epileptic patients can slow down the diagnostic procedure and cause mistakes. The EEG of an epileptic patient can last from minutes to many hours and the goal here is to automatically detect the seizures that occurr during the EEG recording. In other words, the goal is to automatically discriminate between the interictal and ictal states of the brain so that the neurologist can immediately focus on the ictal states with no need of detecting such events manually. In particular, the attention is focused on absence seizures. The goal is to develop a system that is able to extract meaningful features from the EEG and to learn how to classify the brain states accordingly. The complexity of the EEG is considered a key feature when dealing with an epileptic brain and two measures of complexity are here estimated and compared in the task of interictal-ictal states discrimination: Approximate Entropy (ApEn) and Permutation Entropy (PE). A Learning Vector Quantization network is then fed with ApEn and PE and trained. The ApEn+LVQ learning system provided a better sensitivity compared to the PE+LVQ one, nevertheless, it showed a smaller specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Duun-Henriksen, J., Kjaer, T., Madsen, R., Remvig, L., Thomsen, C., Sorensen, H.: Channel selection for automatic seizure detection. Clin. Neurophysiol. 123(1), 84–92 (2012)

    Article  Google Scholar 

  2. Duun-Henriksen, J., Madsen, R., Remvig, L., Thomsen, C., Sorensen, H., Kjaer, T.: Automatic detection of childhood absence epilepsy seizures: toward a monitoring device. Pediatr. Neurol. 46(5), 287–292 (2012)

    Article  Google Scholar 

  3. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17) (2002)

    Google Scholar 

  4. Cao, Y., Tung, W.W., Gao, J.B., Protopopescu, V.A., Hively, L.M.: Detecting dynamical changes in time series using the permutation entropy. Phys. Rev. E 70(046217), 1–7 (2004)

    Google Scholar 

  5. Li, X., Ouyangb, G., Richards, D.A.: Predictability analysis of absence seizures with permutation entropy. Epilepsy Res. 77, 70–74 (2007)

    Google Scholar 

  6. Bruzzo, A.A., Gesierich, B., Santi, M., Tassinari, C.A., Birbaumer, N., Rubboli, G.: Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients. A preliminary study. Neurol. Sci. 29, 3–9 (2008)

    Article  Google Scholar 

  7. Zanin, M., Zunino, L., Rosso, O., Papo, D.: Permutation entropy and its main biomedical and econophysics applications: a review. Entropy 14(8), 1553–1577 (2012)

    Article  MATH  Google Scholar 

  8. Nicolaou, N., Georgiou, J.: Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Syst. Appl. 39(1), 202–209 (2012)

    Article  Google Scholar 

  9. Ouyang, G., Li, J., Liu, X., Li, X.: Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis. Epilepsy Res. 104(3), 246–252 (2013)

    Article  Google Scholar 

  10. Zhu, G., Li, Y., Wen, P., Wang, S., Xi, M.: Epileptogenic focus detection in intracranial EEG based on delay permutation entropy. 1559, 31–36 (2013)

    Google Scholar 

  11. Zhu, G., Li, Y., Wen, P., Wang, S.: Classifying epileptic EEG signals with delay permutation entropy and multi-scale K-means. Adv. Exp. Med. Biol. 823, 143–157 (2015)

    Article  Google Scholar 

  12. Mateos, D., Diaz, J., Lamberti, P.: Permutation entropy applied to the characterization of the clinical evolution of epileptic patients under pharmacological treatment. Entropy 16(11), 5668–5676 (2014)

    Article  Google Scholar 

  13. Li, J., Liu, X., Ouyang, G.: Using relevance feedback to distinguish the changes in EEG during different absence seizure phases

    Google Scholar 

  14. Yang, Z., Wang, Y., Ouyang, G.: Adaptive neuro-fuzzy inference system for classification of background EEG signals from ESES patients and controls

    Google Scholar 

  15. Pincus, S.M.: Entropy as a measure of system complexity. In: Proceedings of the National Academy of Sciences of the USA, vol. 88, pp. 2297–2301 (1991)

    Google Scholar 

  16. Giannakakis, G., Sakkalis, V., Pediaditis, M., Farmaki, C., Vorgia, P., Tsiknakis, M.: An approach to absence epileptic seizures detection using approximate entropy. In: Conference on Proceedings of IEEE Engineering in Medicine and Biology Society, pp. 413–416. IEEE (2013)

    Google Scholar 

  17. Sakkalis, V., Giannakakis, G., Farmaki, C., Mousas, A., Pediaditis, M., Vorgia, P., Tsiknakis, M.: Absence seizure epilepsy detection using linear and nonlinear EEG analysis methods. In: Conference on Proceedings of IEEE Engineering in Medicine and Biology Society, pp. 6333–6336. IEEE (2013)

    Google Scholar 

  18. Guo, L., Rivero, D., Pazos, A.: Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks

    Google Scholar 

  19. Burioka, N., Cornlissen, G., Maegaki, Y., Halberg, F., Kaplan, D., Miyata, M., Fukuoka, Y., Endo, M., Suyama, H., Tomita, Y., Shimizu, E.: Approximate entropy of the electroencephalogram in healthy awake subjects and absence epilepsy patients

    Google Scholar 

  20. Ferlazzo, E., Mammone, N., Cianci, V., Gasparini, S., Gambardella, A., Labate, A., Latella, M., Sofia, V., Elia, M., Morabito, F., Aguglia, U.: Permutation entropy of scalp EEG: a tool to investigate epilepsies: suggestions from absence epilepsies. Clin. Neurophysiol. 125(1), 13–20 (2014)

    Article  Google Scholar 

  21. Mammone, N., Labate, D., Lay-Ekuakille, A., Morabito, F.C.: Analysis of absence seizure generation using EEG spatial-temporal regularity measures. Int. J. Neural Syst. 22(6) (2012)

    Google Scholar 

  22. Mammone, N., Morabito, F.C., Principe, J.C.: Visualization of the short term maximum lyapunov exponent topography in the epileptic brain. In: Proceedings of 28th IEEE EMBS Annual International Conference (EMBC 2006), pp. 4257–4260. New York City, USA (2006)

    Google Scholar 

  23. Mammone, N., Morabito, F.: Analysis of absence seizure EEG via permutation entropy spatio-temporal clustering. In: Proceedings of International Joint Conference on Neural Networks (IJCNN), pp. 1417–1422 (2011)

    Google Scholar 

  24. Mammone, N., Principe, J., Morabito, F., Shiau, D., Sackellares, J.C.: Visualization and modelling of STLmax topographic brain activity maps. J. Neurosci. Methods 189(2), 281–294 (2010)

    Google Scholar 

  25. Kohonen, T.: Learning vector quantization. In: The Handbook of Brain Theory and Neural Networks, pp. 537–540. MIT Press, Cambridge, MA (1995)

    Google Scholar 

  26. Mammone N., Morabito F. C.: Independent Component Analysis and High-Order Statistics for Automatic Artifact Rejection. In: Proceedings of the 2005 International Joint Conference on Neural Networks. Vol. 4, pp. 2447–2452 (2005)

    Google Scholar 

  27. La Foresta F., Inuso G., Mammone N., Morabito F. C.: PCA-ICA for automatic identification of critical events in continuous coma-EEG monitoring. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, Vol. 4, pp. 229–235 (2009)

    Google Scholar 

  28. Mammone N., Morabito F. C.: Analysis of absence seizure EEG via Permutation Entropy spatio-temporal clustering. In: Proceedings of the 2011 International Joint Conference on Neural Networks, pp. 1417–1422 (2011)

    Google Scholar 

Download references

Acknowledgments

This work was cofunded by the Italian Ministry of Health, project code: GR-2011-02351397.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Mammone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mammone, N., Duun-Henriksen, J., Kjaer, T.W., Campolo, M., La Foresta, F., Morabito, F.C. (2016). Quantifying the Complexity of Epileptic EEG. In: Bassis, S., Esposito, A., Morabito, F., Pasero, E. (eds) Advances in Neural Networks. WIRN 2015. Smart Innovation, Systems and Technologies, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-319-33747-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33747-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33746-3

  • Online ISBN: 978-3-319-33747-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics