Abstract
Urban mobility analysis usually examines large cities or even regions. We take another angle and examine a university campus as a city within a city to focus on small-scale and hyperlocal characteristics. The campus mobility data exhibits a high spatial and temporal granularity that we use to drive analyses and visualizations towards the aim of campus analytics. We describe the abstraction approaches and visualizations used towards the development of our tool and share initial results of campus analytics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andresen, S.H., Krogstie, J., Jelle, T.: Lab and research activities at wireless trondheim. In: 4th ISWCS (2007)
Andrienko, G., Andrienko, N., Wrobel, S.: Visual analytics tools for analysis of movement data. SIGKDD Explor. Newsl. 9(2), 38–46 (2007)
Aulie, K.G.: Human Mobility Patterns from Indoor Positioning Systems. Master’s thesis, Norwegian University of Science and Technology, Trondheim, Norway (2015)
Bak, P., Omer, I., Schreck, T.: Visual analytics of urban environments using high-resolution geographic data. In: Painho, M., Santos, M.Y., Pundt, H. (eds.) Geospatial Thinking. LNGC, vol. 0, pp. 25–42. Springer, Heidelberg (2010)
Becker, R., Cáceres, R., Hanson, K., Isaacman, S., Loh, J.M., Martonosi, M., Rowland, J., Urbanek, S., Varshavsky, A., Volinsky, C.: Human mobility characterization from cellular network data. Commun. ACM 56(1), 74–82 (2013)
Biczok, G., Diez Martinez, S., Jelle, T., Krogstie, J.: Navigating MazeMap: indoor human mobility, spatio-logical ties and future potential. In: PerMoby 2014 (2014)
Eriksen, J.B.: Visualization of Crowds from Indoor Positioning Data. Master’s thesis, Norwegian University of Science and Technology, Trondheim, Norway (2015)
Gao, S., Krogstie, J., Thingstad, T., Tran, H.: A mobile service using anonymous location-based data: finding reading rooms. Int. J. Inf. Learn. Technol. 32(1), 32–44 (2015)
Ghosh, J., Beal, M.J., Ngo, H.Q., Qiao, C.: On profiling mobility and predicting locations of wireless users. In: REALMAN 2006, pp. 55–62. ACM (2006)
Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)
Little, J., O’Brien, B.: A Technical Review of Cisco’s Wi-Fi-Based Location Analytics. Technical report, Cisco (2013)
Ren, Y., Tomko, M., Ong, K., Bai, Y.B., Sanderson, M.: The influence of indoor spatial context on user information behaviours. In: Workshop on Information Access in Smart Cities. ECIR 2014 (2014)
Zheng, Y., Capra, L., Wolfson, O., Yang, H.: Urban computing: concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol. 5(3), 38:1–38:55 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Ahlers, D., Aulie, K.G., Eriksen, J., Krogstie, J. (2016). Visualizing a City Within a City – Mapping Mobility Within a University Campus. In: Leon-Garcia, A., et al. Smart City 360°. SmartCity 360 SmartCity 360 2016 2015. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 166. Springer, Cham. https://doi.org/10.1007/978-3-319-33681-7_41
Download citation
DOI: https://doi.org/10.1007/978-3-319-33681-7_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-33680-0
Online ISBN: 978-3-319-33681-7
eBook Packages: Computer ScienceComputer Science (R0)