[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Epidermal Physiology

  • Reference work entry
  • First Online:
Agache's Measuring the Skin

Abstract

The epidermis, primarily made of keratinocytes, is continuously renewed by the proliferation of stem cells and the differentiation of their progeny, which undergo terminal differentiation as they leave the basal layer and move upward toward the surface, where they die and slough off. These cells are responsible for tissue homeostasis and regeneration of epidermis following injury. Basal keratinocytes append the dermal epidermal junction, a cell surface-associated extracellular matrix that provides structural support to keratinocytes and influences their behaviour. Similar to all basement membranes, the dermal epidermal junction primarily consists of laminins, type IV collagens, nidogens, and the heparan sulfate proteoglycan perlecan, all of which are necessary for tissue organization and structural integrity. Keratinocytes committed to the differentiation program downregulate integrins to become less adhesive, move to the suprabasal compartment and continue their upward movement until they are terminally differentiated and shed off. This produces several layers of keratinocytes, at different stages of differentiation that can be identified by the expression of keratins. Beside a function of protective barrier, epidermis has also an important secretory activity. The numerous and diverse factors produced by keratinocytes, that may act in an autocrine, paracrine or endocrine manner, are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 525.75
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 525.75
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aubin F. Skin immune system. In: Handbook of Measuring the skin. 1st edn. Berlin: Springer; 2004.

    Google Scholar 

  • Bae S, Matsunaga Y, Tanaka Y, Katayama I. Autocrine induction of substance P mRNA and peptide in cultured normal human keratinocytes. Biochem Biophys Res Commun. 1999;263:327–33.

    Article  CAS  PubMed  Google Scholar 

  • Barrandon Y, Green H. Cell size as a determinant of the clone-forming ability of human keratinocytes. Proc Natl Acad Sci U S A. 1985;82:5390–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrandon Y, Green H. Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci U S A. 1987;84:2302–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bos JD, Kapsenberg ML. The skin immune system: progress in cutaneous biology. Immun Today. 1993;14:75–8.

    Article  CAS  PubMed  Google Scholar 

  • Boxman IL, Ruwhof C, Boerman OC, Lowik CW, Ponec M. Role of fibroblasts in the regulation of proinflammatory interleukin IL-1, IL-6 and IL-8 levels induced by keratinocyte derived IL-1. Arch Dermatol Res. 1996;288:391–8.

    Article  CAS  PubMed  Google Scholar 

  • Boyce ST. Epidermis as a secretory tissue. J Invest Dermatol. 1994;102:8–10.

    Article  CAS  PubMed  Google Scholar 

  • Brouard M, Casado M, Djelidi S, Barrandon Y, Farman N. Epithelial sodium channel in human epidermal keratinocytes: expression of its subunits and relation to sodium transport and differentiation. J Cell Sci. 1999;112:3343–52.

    CAS  PubMed  Google Scholar 

  • Deliconstantinos G, Villiotou V, Stravrides JC. Release by ultraviolet B (u.v.B) radiation of nitric oxide (NO) from human keratinocytes: a potential role for nitric oxide in erythema production. Br J Pharmacol. 1995;114:1257–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorschner RA, Pestonjamasp VK, Tamakuwala S, Ohtake T, Rudisill J, Nizet V, Agerberth B, Gudmundsson GH, Gallo RL. Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus. J Invest Dermatol. 2001;117:91–7.

    Article  CAS  PubMed  Google Scholar 

  • Eming SA, Medalie DA, Tompkins RG, Yarmush ML, Morgan JR. Genetically modified human keratinocytes overexpressing PDGF-A enhance the performance of a composite skin graft. Hum Gene Ther. 1998;9:529–39.

    Article  CAS  PubMed  Google Scholar 

  • Fenjves ES, Gordon DA, Pershing LK, Williams DL, Taichman LB. Systemic distribution of apolipoprotein E secreted by grafts of epidermal keratinocytes: implications for epidermal function and gene therapy. Proc Natl Acad Sci U S A. 1989;86:8803–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harder J, Bartels J, Christophers E, Schroder J-M. A peptide antibiotic from human skin. Nature. 1997;6636:387–861.

    Google Scholar 

  • Heenen M, Galand P. The growth fraction of normal human epidermis. Dermatology. 1997;194:313–7.

    Article  CAS  PubMed  Google Scholar 

  • Holick MF. Skin: site of the synthesis of vitamin D and a target tissue for the active form, 1,25-Dihydroxyvitamin D3. In: Milestone LM, Edelson RL, editors. Endocrine, metabolic and immunologic functions of keratinocytes, vol. 548. New York: Annals of the New York Academy of Sciences; 1988. p. 14–26.

    Google Scholar 

  • Holtz J. Hemodynamics in regional circulatory beds and local vascular reactivity. In: Greger R, Windhorst U, editors. Comprehensive human physiology. From cellular mechanisms to integration, vol. 2. Berlin: Springer; 1996. p. 1917–40.

    Chapter  Google Scholar 

  • Insogna KL, Stewart AF, Ikeda K, Centrella M, Milestone LM. Characterization of a parathyroid hormone-like peptide secreted by human keratinocytes. In: Milestone LM, Edelson RL, editors. Endocrine, metabolic and immunologic functions of keratinocytes, vol. 548. Ney York: Annals of the New York Academy of Sciences; 1988. p. 146–59.

    Google Scholar 

  • Jensen UB, Lowel S, Watt FM. The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development. 1999;126:2409–18.

    CAS  PubMed  Google Scholar 

  • Kaplan MM, Gordon PR, Pan C, Lee JK, Gilchrest BA. Keratinocytes convert thyroxine to triiodothyronine. In: Milestone LM, Edelson RL, editors. Endocrine, metabolic and immunologic functions of keratinocytes, vol. 548. New York: Annals of the New York Academy of Sciences; 1988. p. 56–65.

    Google Scholar 

  • Katz AB, Taichman LB. Epidermis as a secretory tissue: an in vitro model to study keratinocyte secretion. J Invest Dermatol. 1994;102:55–60.

    Article  CAS  PubMed  Google Scholar 

  • Katz AB, Taichman LB. A partial catalog of proteins secreted by epidermal keratinocytes in culture. J Invest Dermatol. 1999;112:818–21.

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Li A. Adhesive properties of human basal epidermal cells: an analysis of keratinocyte stem cells, transit amplifying cells and postmitotic differentiating cells. J Invest Dermatol. 2000;114:413–20.

    Article  CAS  PubMed  Google Scholar 

  • Krueger GG, Morgan JR, Jorgensen CM, Schmidt L, Li HL, Kwan MK, Boyce ST, Wiley HS, Kaplan J, Petersen MJ. Genetically modified skin to treat disease: potential and limitations. J Invest Dermatol. 1994;103:76S–84.

    Article  CAS  PubMed  Google Scholar 

  • Kupper TS. The activated keratinocyte: a model for inducible cytokine production by none-bone marrow-derived cells in cutaneous inflammatory and immune responses. J Invest Dermatol. 1990;94:146S–50.

    Article  CAS  PubMed  Google Scholar 

  • Levy L, Broad S, Diekmann D, Evans RD, Watt FM. Beta 1 integrins regulate keratinocyte adhesion and differentiation. Mol Biol Cell. 2000;11:453–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malaviya R, Morrisson AR, Pentland AP. Histamine in human epidermal cells is induced by ultraviolet light injury. J Invest Dermatol. 1996;106:785–9.

    Article  CAS  PubMed  Google Scholar 

  • Martinez A, Elsasser TH, Muro-Cacho C, Moody TW, Miller MJ, Macri CJ, Cuttitta F. Expression of adrenomedullin and its receptor in normal and malignant human skin: a potential pluripotent role in the integument. Endocrinology. 1997;138:5597–604.

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K, Zhang JZ, Nihei Y, Ono I, Kaneko F. Regulatory effects of gamma interferon on IL-6 and IL-8 secretion by cultured human keratinocytes and dermal fibroblasts. J Dermatol. 1995;22:901–6.

    Article  CAS  PubMed  Google Scholar 

  • Mazereeuw Hautier J, Redoules D, Tarroux R, Charveron M, Salles JP, Simon MF, Cerutti I, Assalit MF, Gall Y, Bonafe JL, Chap H. Identification of pancreatic type I secreted phospholipase A2 in human epidermis and its determination by tape striping. Br J Dermatol. 2000;142:424–31.

    Article  CAS  PubMed  Google Scholar 

  • Michel M, Torok N, Godbout MJ, Luissier M, Gaudreau P, Royal A, Germain L. Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage. J Cell Sci. 1996;109:1017–28.

    CAS  PubMed  Google Scholar 

  • Nathan C, Sporn M. Cytokines in context. J Cell Biol. 1991;113:981–6.

    Article  CAS  PubMed  Google Scholar 

  • Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature. 2001;414:454–7.

    Article  CAS  PubMed  Google Scholar 

  • Oda Y, Imanzahrai A, Kwong A, Komuves L, Elias PM, Largman C, Mauro T. Epithelial sodium channels are upregulated during epidermal differentiation. J Invest Dermatol. 1999;113:796–801.

    Article  CAS  PubMed  Google Scholar 

  • Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DYM. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347:1151–60.

    Article  CAS  PubMed  Google Scholar 

  • Reinartz J, Bechtel MJ, Kramer MD. Tumor necrosis factor alpha induced apoptosis in a human keratinocyte cell line (HaCat) is counteracted by transforming growth factor alpha. Exp Cell Res. 1996;228:334–40.

    Article  CAS  PubMed  Google Scholar 

  • Rys-Sikora KE, Konger RL, Schoggins JW, Malaviya R, Pentland AP. Coordinate expression of secretory phospholipase A(2) and cyclooxygenase-2 in activated human keratinocytes. Am J Physiol Cell Physiol. 2000;278:C822–33.

    CAS  PubMed  Google Scholar 

  • Schauer E, Trautinger F, Köck A, Schwarz A, Bhardwaj R, Simon M, Ansel JC, Schwarz T, Luger TA. Proopiomelanocortin derived peptides are synthesized and released by human keratinocytes. J Clin Invest. 1994;93:2258–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schröder JM. Cytokine networks in the skin. J Invest Dermatol. 1995;105:20S–4.

    Article  PubMed  Google Scholar 

  • Shimizu Y, Sakai M, Umemura Y, Ueda H. Immunohistochemical localization of nitric oxide synthase in normal human skin: expression of endothelial-type and inducible-type nitric oxide synthase in keratinocytes. J Dermatol. 1997;24:80–7.

    Article  CAS  PubMed  Google Scholar 

  • Stoof TJ, Boorsma DM, Nickoloff BJ. Keratinocyte and immunological cytokines. In: Leigh IM, Lane EB, Watt FM, editors. The keratinocyte handbook. Cambridge: Cambridge University Press; 1994. p. 235–42.

    Google Scholar 

  • Watt FM, Hogan BLM. Out of Eden: stem cells and their niches. Science. 2000;287:1427–30.

    Article  CAS  PubMed  Google Scholar 

  • Wiedow O, Harder J, Bartels J, Streit V, Christopher E. Antileukoprotease in human skin: an antibiotic peptide constitutively produced by keratinocytes. Biochem Biophys Res Commun. 1998;248:904–9.

    Article  CAS  PubMed  Google Scholar 

  • Wysolmerski JJ, Stewart AF. The physiology of parathyroid hormone-related protein: an emerging role as a developmental factor. Annu Rev Physiol. 1998;60:431–60.

    Article  CAS  PubMed  Google Scholar 

  • Zhu AJ, Watt FM. Beta-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development. 1999;126:2285–98.

    CAS  PubMed  Google Scholar 

  • Zhu AJ, Haase I, Watt FM. Signaling via beta1 integrins and mitogen-activated protein kinase determines human epidermal stem cell fate in vitro. Proc Natl Acad Sci U S A. 1999;96:6728–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Rousselle .

Editor information

Editors and Affiliations

Glossary

ACTH

Adrenocorticotrophic hormone

Autocrine

Peptides (cytokine, extracellular matrix components, epidermal proteins etc.) are released but bind immediately to receptors and act on the cell that produced them.

Contra IL-1

Contra interleukin 1

Endocrine

Peptides, synthesized by the keratinocytes, enter the circulation and induce specific biologic responses in distant target tissues.

Exocrine

Release of secretion toward the external part of the body. Glandular epithelia (sebaceous and sweat) of the skin are specialized for this function.

FGF

Fibroblast growth factor. Either acid FGF or basic FGF

GCSF

Granulocyte colony-stimulating factor

GMCSF

Granulocyte-/macrophage-stimulating factor

Homeostasis

Maintenance of the organism’s physiological parameters at their normal value

huGRO

Human growth factor

IL

Interleukin: IL-1α, interleukin 1α; IL-1β, interleukin 1 β; IL-1ra, interleukin 1 receptor antagonist; IL-6, interleukin 6

IFNγ-IP10

Interferon gamma-induced protein

Juxtacrine

Peptides are released and will act on cells in contact with the producing cell.

KGF

Keratinocyte growth factor

K LIF

Keratinocyte-derived lymphocyte inhibitory factor

MCAF

Monocyte chemotactic and activating factor

MCSF

Macrophage colony-stimulating factor

MSH

Melanocyte-stimulating hormone

NGF

Nerve growth factor

Paracrine

Peptides are released by a cell and will act on cells immediately surrounding the producing cell.

PDGF

Platelet-derived growth factor

TGFα

Transforming growth factor alpha

TGFβ1

Transforming growth factor beta1

TNFα

Tumor necrosis factor alpha

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Rousselle, P., Gentilhomme, E., Neveux, Y. (2017). Epidermal Physiology. In: Humbert, P., Fanian, F., Maibach, H., Agache, P. (eds) Agache's Measuring the Skin. Springer, Cham. https://doi.org/10.1007/978-3-319-32383-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32383-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32381-7

  • Online ISBN: 978-3-319-32383-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics