[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Maintain and Improve Mental Health by Smart Virtual Reality Serious Games

  • Conference paper
  • First Online:
Pervasive Computing Paradigms for Mental Health (MindCare 2015)

Abstract

Serious games for mental health is seen as the groundwork for assistive technology to maintain and improve mental health. We present a technical system layout we partly implemented for demonstration purposes and highlight vision-based perception and manipulation capabilities. These include physical interactions employing artificial general intelligence in virtual reality applications. We employ hand gesture tracking, as well as an Oculus Rift integrated gaze and eye tracking system. The resulting serious games should eventually cover daily life activities, which we additionally monitor. The dynamic and contextual modelling of obstacles are central issues, and capabilities required for serious games include knowledge about the 3D world. Such knowledge include gaze and hand sensors interpretations for multimedia information extraction in causal relationships. Towards this goal, we envision to make use of virtual reality with a physics engine (rigid and soft body dynamics including collision detection) for the observed objects. We also exploit semantic networks to enable the machine to filter information and infer ongoing complex events including hidden BDI (beliefs, desires, intentions) variables. We see this combination of employed technology as the relevant groundwork for reaching human-level general intelligence and to enable real-world applications. Future applications and user groups we target on include dementia patients.

A. Lőrincz—This research was supported by EIT Digital in the CPS for Smart Factories activity and Kognit, http://kognit.dfki.de.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.smivision.com/en/gaze-and-eye-tracking-systems/products/eye-tracking-hmd-upgrade.html.

References

  1. Antol, S., Zitnick, C.L., Parikh, D.: Zero-shot learning via visual abstraction. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 401–416. Springer, Heidelberg (2014)

    Google Scholar 

  2. Borji, A., Lennartz, A., Pomplun, M.: What do eyes reveal about the mind?: algorithmic inference of search targets from fixations. Neurocomputing 149, 788–799 (2015)

    Article  Google Scholar 

  3. Cirillo, A.: Using validation techniques with people living with dementia, June 2013. http://assistedliving.about.com/od/familycaregivercommunication/a/Using-Validation-Techniques-With-People-Living-With-Dementia.htm

  4. Cleary, J.G., Witten, I.H.: Data compression using adaptive coding and partial string matching. IEEE Trans. Commun. 32(4), 396–402 (1984)

    Article  Google Scholar 

  5. Cohene, T., Baecker, R., Marziali, E., Mindy, S.: Memories of a life: a design case study for alzheimer’s disease. In: Lazar, J. (ed.) Universal Usability, pp. 357–387. Wiley, Chichester (2007)

    Google Scholar 

  6. Dai, P., Lin, C.H., Weld, D.S., et al.: Pomdp-based control of workflows for crowdsourcing. Artif. Intell. 202, 52–85 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Douglas, S., James, I., Ballard, C.: Non-pharmacological interventions in dementia. Adv. Psychiatr. Treat. 10(3), 171–177 (2004)

    Article  Google Scholar 

  8. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-based explicit semantic analysis. In: IJCAI, vol. 7, pp. 1606–1611 (2007)

    Google Scholar 

  9. Gharsellaoui, S., Selouani, S.A., Dahmane, A.O.: Automatic emotion recognition using auditory and prosodic indicative features. In: 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1265–1270. IEEE (2015)

    Google Scholar 

  10. Howe, J.: The rise of crowdsourcing. Wired Mag. 14(6), 1–4 (2006)

    MathSciNet  Google Scholar 

  11. Jeni, L.A., Lőrincz, A., Szabó, Z., Cohn, J.F., Kanade, T.: Spatio-temporal event classification using time-series kernel based structured sparsity. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 135–150. Springer, Heidelberg (2014)

    Google Scholar 

  12. Jonson, R.: Picture Communication Symbols. Mayer-Johnson, Solana Beach (1985)

    Google Scholar 

  13. Lin, X., Parikh, D.: Don’t just listen, use your imagination: leveraging visual common sense for non-visual tasks. arXiv preprint arXiv:1502.06108 (2015)

  14. Liu, H., Singh, P.: Conceptnet – a practical commonsense reasoning tool-kit. BT Technol. J. 22(4), 211–226 (2004)

    Article  MathSciNet  Google Scholar 

  15. Lőrincz, A.: Revolution in health and wellbeing. KI-Künstliche Intelligenz 29(2), 219–222 (2015)

    Article  Google Scholar 

  16. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  17. Oberweger, M., Wohlhart, P., Lepetit, V.: Hands deep in deep learning for hand pose estimation. arXiv preprint arXiv:1502.06807 (2015)

  18. Pintér, B., Vörös, G., Palotai, Z., Szabó, Z., Lőrincz, A.: Determining unintelligible words from their textual contexts. Procedia Soc. Behav. Sci. 73, 101–108 (2013)

    Article  Google Scholar 

  19. Pintér, B., Vörös, G., Szabó, Z., Lőrincz, A.: Wikifying novel words to mixtures of wikipedia senses by structured sparse coding. In: Fred, A., De Marsico, M. (eds.) Pattern Recogn. Appl. Methods, pp. 241–255. Springer, Heidelberg (2015)

    Google Scholar 

  20. Song, C., Qu, Z., Blumm, N., Barabási, A.L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Speer, R., Havasi, C.: Representing general relational knowledge in conceptnet 5. In: LREC, pp. 3679–3686 (2012)

    Google Scholar 

  22. Foundation, S.: Computer based technology and caring for older adults (2003). http://www.spry.org/pdf/cbtcoa_english.pdf

  23. Taulbee, L.R., Folsom, J.C.: Reality orientation for geriatric patients. Psychiatr. Serv. 17(5), 133–135 (1966)

    Article  Google Scholar 

  24. Toyama, T., Sonntag, D.: Towards episodic memory support for dementia patients by recognizing objects, faces and text in eye gaze. In: Hölldobler, S., Krötzsch, M., Peñaloza, R., Rudolph, S. (eds.) KI 2015. LNCS, vol. 9324, pp. 316–323. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24489-1_29

    Chapter  Google Scholar 

  25. Vörös, G., Verő, A., Pintér, B., Miksztai-Réthey, B., Toyama, T., Lőrincz, A., Sonntag, D.: Towards a smart wearable tool to enable people with SSPI to communicate by sentence fragments. In: Cipresso, P., Matic, A., Lopez, G. (eds.) MindCare 2014. LNICST, vol. 100, pp. 90–99. Springer, Heidelberg (2014)

    Google Scholar 

  26. Woods, B., Aguirre, E., Spector, A.E., Orrell, M.: Cognitive stimulation to improve cognitive functioning in people with dementia. Cochrane Database Syst Rev 2 (2012)

    Google Scholar 

  27. Zhang, X., Sugano, Y., Fritz, M., Bulling, A.: Appearance-based gaze estimation in the wild. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society (2015)

    Google Scholar 

  28. Zitnick, C.L., Parikh, D., Tech, V.: Bringing semantics into focus using visual abstraction. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2013)

    Google Scholar 

  29. Zygouris, S., Giakoumis, D., Votis, K., Doumpoulakis, S., Ntovas, K., Segkouli, S., Karagiannidis, C., Tzovaras, D., Tsolaki, M.: Can a virtual reality cognitive training application fulfill a dual role? Using the virtual supermarket cognitive training application as a screening tool for mild cognitive impairment. J. Alzheimers Dis. 40, 1–10 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Lőrincz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sárkány, A. et al. (2016). Maintain and Improve Mental Health by Smart Virtual Reality Serious Games. In: Serino, S., Matic, A., Giakoumis, D., Lopez, G., Cipresso, P. (eds) Pervasive Computing Paradigms for Mental Health. MindCare 2015. Communications in Computer and Information Science, vol 604. Springer, Cham. https://doi.org/10.1007/978-3-319-32270-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32270-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32269-8

  • Online ISBN: 978-3-319-32270-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics