Abstract
This paper presents an analysis of the effects in quality results that bring the use of different types of membership functions in an interval type-2 fuzzy system, used to adapt some parameters of particle swarm optimization (PSO). Benchmark mathematical functions are used to test the methods, and a comparative study is performed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Olivas, F., Valdez, F., Castillo, O.: Particle swarm optimization with dynamic parameter adaptation using interval type-2 fuzzy logic for benchmark mathematical functions. In: 2013 World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 36–40 (2013)
Melin, P., Olivas, F., Castillo, O., Valdez, F., Soria, J., Valdez, M.: Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Expert Syst. Appl, 3196–3206. Elsevier (2016)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, IV, pp. 1942–1948. IEEE Service Center, Piscataway
Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)
Engelbrecht, A.: Fundamentals of Computational Swarm Intelligence. Wiley, New York (2006)
Zadeh, L.: Fuzzy sets. Inf. Control 8, 338 (1965)
Zadeh, L.: Fuzzy logic. IEEE Comput. 83–92
Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning—I. Inform. Sci. 8, 199–249 (1975)
Liang, Q., Mendel, J.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)
Hongbo, L., Ajith, A.: A fuzzy adaptive turbulent particle swarm optimization. Int. J. Innovative Comput. Appl. 1(1), 39–47 (2007)
Shi, Y., Eberhart, R.: Fuzzy adaptive particle swarm optimization. In: Evolutionary Computation, pp. 101–106 (2001)
Wang, B., Liang, G., ChanLin, W., Yunlong, D.: A new kind of fuzzy particle swarm optimization FUZZY_PSO algorithm. In: 1st International Symposium on Systems and Control in Aerospace and Astronautics. ISSCAA 2006, pp. 309–311
Wang, L.-X.: Fuzzy systems are universal approximators. In: IEEE International Conference on Fuzzy Systems, pp. 1163, 1170. 8–12 Mar (1992)
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC-15(1), 116,132 (1985)
Jang, J., Sun, C., Mizutani, E.: Neuro-fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, Upper Saddle River (1997)
Haupt, R., Haupt, S.: Practical Genetic Algorithms, second edn. A Wiley-Interscience publication, New Jersey (2004)
Marcin, M., Smutnicki, C.: Test functions for optimization needs (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Olivas, F., Valdez, F., Castillo, O. (2016). A Comparative Study of Membership Functions for an Interval Type-2 Fuzzy System Used for Dynamic Parameter Adaptation in Particle Swarm Optimization. In: Zadeh, L., Abbasov, A., Yager, R., Shahbazova, S., Reformat, M. (eds) Recent Developments and New Direction in Soft-Computing Foundations and Applications. Studies in Fuzziness and Soft Computing, vol 342. Springer, Cham. https://doi.org/10.1007/978-3-319-32229-2_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-32229-2_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32227-8
Online ISBN: 978-3-319-32229-2
eBook Packages: EngineeringEngineering (R0)