[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Comparative Study of Membership Functions for an Interval Type-2 Fuzzy System Used for Dynamic Parameter Adaptation in Particle Swarm Optimization

  • Chapter
  • First Online:
Recent Developments and New Direction in Soft-Computing Foundations and Applications

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 342))

Abstract

This paper presents an analysis of the effects in quality results that bring the use of different types of membership functions in an interval type-2 fuzzy system, used to adapt some parameters of particle swarm optimization (PSO). Benchmark mathematical functions are used to test the methods, and a comparative study is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Olivas, F., Valdez, F., Castillo, O.: Particle swarm optimization with dynamic parameter adaptation using interval type-2 fuzzy logic for benchmark mathematical functions. In: 2013 World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 36–40 (2013)

    Google Scholar 

  2. Melin, P., Olivas, F., Castillo, O., Valdez, F., Soria, J., Valdez, M.: Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Expert Syst. Appl, 3196–3206. Elsevier (2016)

    Google Scholar 

  3. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, IV, pp. 1942–1948. IEEE Service Center, Piscataway

    Google Scholar 

  4. Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  5. Engelbrecht, A.: Fundamentals of Computational Swarm Intelligence. Wiley, New York (2006)

    Google Scholar 

  6. Zadeh, L.: Fuzzy sets. Inf. Control 8, 338 (1965)

    Google Scholar 

  7. Zadeh, L.: Fuzzy logic. IEEE Comput. 83–92

    Google Scholar 

  8. Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning—I. Inform. Sci. 8, 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liang, Q., Mendel, J.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)

    Article  Google Scholar 

  10. Hongbo, L., Ajith, A.: A fuzzy adaptive turbulent particle swarm optimization. Int. J. Innovative Comput. Appl. 1(1), 39–47 (2007)

    Article  Google Scholar 

  11. Shi, Y., Eberhart, R.: Fuzzy adaptive particle swarm optimization. In: Evolutionary Computation, pp. 101–106 (2001)

    Google Scholar 

  12. Wang, B., Liang, G., ChanLin, W., Yunlong, D.: A new kind of fuzzy particle swarm optimization FUZZY_PSO algorithm. In: 1st International Symposium on Systems and Control in Aerospace and Astronautics. ISSCAA 2006, pp. 309–311

    Google Scholar 

  13. Wang, L.-X.: Fuzzy systems are universal approximators. In: IEEE International Conference on Fuzzy Systems, pp. 1163, 1170. 8–12 Mar (1992)

    Google Scholar 

  14. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC-15(1), 116,132 (1985)

    Google Scholar 

  15. Jang, J., Sun, C., Mizutani, E.: Neuro-fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, Upper Saddle River (1997)

    Google Scholar 

  16. Haupt, R., Haupt, S.: Practical Genetic Algorithms, second edn. A Wiley-Interscience publication, New Jersey (2004)

    Google Scholar 

  17. Marcin, M., Smutnicki, C.: Test functions for optimization needs (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frumen Olivas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Olivas, F., Valdez, F., Castillo, O. (2016). A Comparative Study of Membership Functions for an Interval Type-2 Fuzzy System Used for Dynamic Parameter Adaptation in Particle Swarm Optimization. In: Zadeh, L., Abbasov, A., Yager, R., Shahbazova, S., Reformat, M. (eds) Recent Developments and New Direction in Soft-Computing Foundations and Applications. Studies in Fuzziness and Soft Computing, vol 342. Springer, Cham. https://doi.org/10.1007/978-3-319-32229-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32229-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32227-8

  • Online ISBN: 978-3-319-32229-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics