Abstract
In recent years, high-throughput sequencing technologies have facilitated the generation of an unprecedented amount of genomic cancer data, opening the way to a more profound understanding of tumorigenesis. In this regard, two fundamental questions have emerged: (1) which alterations drive tumor progression? and (2) what are the evolutionary constraints on the order in which these alterations occur? Answering these questions is crucial for therapeutic decisions involving targeted agents, which are often based on the identification of early genetic events. Mainly because of interpatient heterogeneity, progression at the level of pathways has been shown to be more robust than progression at the level of single genes. Here, we introduce pathTiMEx, a probabilistic generative model of tumor progression at the level of mutually exclusive driver pathways. pathTiMEx employs a stochastic optimization procedure to jointly optimize the assignment of genes to pathways and the evolutionary order constraints among pathways. On cancer data, pathTiMEx recapitulates previous knowledge on tumorigenesis, such as the temporal order among pathways which include APC, KRAS and TP53 in colorectal cancer, while also proposing new biological hypotheses, such as the existence of a single early causal event consisting of the amplification of CDK4 and the deletion of CDKN2A in glioblastoma. The pathTiMEx R package is available at https://github.com/cbg-ethz/pathTiMEx. Supplementary Material for this article is available online.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Attolini, C.S.O., Cheng, Y.K., Beroukhim, R., Getz, G., Abdel-Wahab, O., Levine, R.L., Mellinghoff, I.K., Michor, F.: A mathematical framework to determine the temporal sequence of somatic genetic events in cancer. Proc. Nat. Acad. Sci. 107(41), 17604–17609 (2010)
Babur, Ö., Gönen, M., Aksoy, B.A., Schultz, N., Ciriello, G., Sander, C., Demir, E.: Systematic identification of cancer driving signaling pathways based on mutual exclusivity of genomic alterations. bioRxiv, p. 009878 (2014)
Beerenwinkel, N., Eriksson, N., Sturmfels, B.: Conjunctive bayesian networks. Bernoulli 13(4), 893–909 (2007)
Beerenwinkel, N., Schwarz, R.F., Gerstung, M., Markowetz, F.: Cancer evolution: mathematical models and computational inference. Syst. Biol. 64(1), e1–e25 (2015)
Beerenwinkel, N., Sullivant, S.: Markov models for accumulating mutations. Biometrika, p. asp023 (2009)
Brennan, C.W., Verhaak, R.G., McKenna, A., Campos, B., Noushmehr, H., Salama, S.R., Zheng, S., Chakravarty, D., Sanborn, J.Z., Berman, S.H., et al.: The somatic genomic landscape of glioblastoma. Cell 155(2), 462–477 (2013)
Cancer Genome Atlas Network and others: Comprehensive molecular portraits of human breast tumours. Nature 490(7418), 61–70 (2012)
Cancer Genome Atlas Research Network: Integrated genomic analyses of ovarian carcinoma. Nature 474(7353), 609–615 (2011)
Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, C.J., Heuer, M.L., Larsson, E., et al.: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2(5), 401–404 (2012)
Cheng, Y.K., Beroukhim, R., Levine, R.L., Mellinghoff, I.K., Holland, E.C., Michor, F., et al.: A mathematical methodology for determining the temporal order of pathway alterations arising during gliomagenesis. PLoS Comput. Biol. 8(1), e1002337 (2012)
Ciriello, G., Cerami, E., Sander, C., Schultz, N.: Mutual exclusivity analysis identifies oncogenic network modules. Genome Res. 22(2), 398–406 (2012)
Constantinescu, S., Szczurek, E., Mohammadi, P., Rahnenfuhrer, J., Beerenwinkel, N.: TiMEx: a waiting time model for mutually exclusive cancer alterations. Bioinformatics (2015). doi:10.1093/bioinformatics/btv400
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B (Methodol.) 39(1), 1–38 (1977)
Desper, R., Jiang, F., Kallioniemi, O.P., Moch, H., Papadimitriou, C.H., Schäffer, A.A.: Inferring tree models for oncogenesis from comparative genome hybridization data. J. Comput. Biol. 6(1), 37–51 (1999)
Diaz-Uriarte, R.: Identifying restrictions in the order of accumulation of mutations during tumor progression: effects of passengers, evolutionary models, and sampling. BMC Bioinformatics 16(1), 41 (2015)
Farahani, H.S., Lagergren, J.: Learning oncogenetic networks by reducing to mixed integer linear programming. Plos One 8(6), e65773 (2013)
Fearon, E.R.: Molecular genetics of colorectal cancer. Annu. Rev. Pathol. 6, 479–507 (2011)
Fearon, E.R., Vogelstein, B.: A genetic model for colorectal tumorigenesis. Cell 61(5), 759–767 (1990)
Gerstung, M., Baudis, M., Moch, H., Beerenwinkel, N.: Quantifying cancer progression with conjunctive bayesian networks. Bioinformatics 25(21), 2809–2815 (2009)
Gerstung, M., Eriksson, N., Lin, J., Vogelstein, B., Beerenwinkel, N.: The temporal order of genetic and pathway alterations in tumorigenesis. PloS One 6(11), e27136 (2011)
Hjelm, M., Höglund, M., Lagergren, J.: New probabilistic network models and algorithms for oncogenesis. J. Comput. Biol. 13(4), 853–865 (2006)
Jerby-Arnon, L., Pfetzer, N., Waldman, Y.Y., McGarry, L., James, D., Shanks, E., Seashore-Ludlow, B., Weinstock, A., Geiger, T., Clemons, P.A., et al.: Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell 158(5), 1199–1209 (2014)
Kim, Y.A., Cho, D.Y., Dao, P., Przytycka, T.M.: Memcover: integrated analysis of mutual exclusivity and functional network reveals dysregulated pathways across multiple cancer types. Bioinformatics 31(12), i284–i292 (2015)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
Lawrence, M.S., Stojanov, P., Polak, P., Kryukov, G.V., Cibulskis, K., Sivachenko, A., Carter, S.L., Stewart, C., Mermel, C.H., Roberts, S.A., et al.: Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457), 214–218 (2013)
Leiserson, M.D., Blokh, D., Sharan, R., Raphael, B.J.: Simultaneous identification of multiple driver pathways in cancer. PLoS Comput. Biol. 9(5), e1003054 (2013)
Levandowsky, M., Winter, D.: Distance between sets. Nature 234(5323), 34–35 (1971)
Loohuis, L.O., Caravagna, G., Graudenzi, A., Ramazzotti, D., Mauri, G., Antoniotti, M., Mishra, B.: Inferring tree causal models of cancer progression with probability raising. Plos One 9(10), e108358 (2014)
Luo, J., Solimini, N.L., Elledge, S.J.: Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136(5), 823–837 (2009)
Madigan, D., York, J., Allard, D.: Bayesian graphical models for discrete data. In: International Statistical Review/Revue Internationale de Statistique, pp. 215–232 (1995)
Mermel, C.H., Schumacher, S.E., Hill, B., Meyerson, M.L., Beroukhim, R., Getz, G., et al.: GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12(4), R41 (2011)
Ramazzotti, D., Caravagna, G., Olde-Loohuis, L., Graudenzi, A., Korsunsky, I., Mauri, G., Antoniotti, M., Mishra, B.: CAPRI: efficient inference of cancer progression models from cross-sectional data. Bioinformatics, p. btv296 (2015)
Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)
Raphael, B.J., Vandin, F.: Simultaneous inference of cancer pathways and tumor progression from cross-sectional mutation data. In: Sharan, R. (ed.) RECOMB 2014. LNCS, vol. 8394, pp. 250–264. Springer, Heidelberg (2014)
Sakoparnig, T., Beerenwinkel, N.: Efficient sampling for bayesian inference of conjunctive bayesian networks. Bioinformatics 28(18), 2318–2324 (2012)
Shanmugam, C., Jhala, N.C., Katkoori, V.R., Wan, W., Meleth, S., Grizzle, W.E., Manne, U.: Prognostic value of mucin 4 expression in colorectal adenocarcinomas. Cancer 116(15), 3577–3586 (2010)
Stratton, M.R., Campbell, P.J., Futreal, P.A.: The cancer genome. Nature 458(7239), 719–724 (2009)
Szczurek, E., Beerenwinkel, N.: Modeling mutual exclusivity of cancer mutations. PLoS Comput. Biol. 10(3), e1003503 (2014)
Torti, D., Trusolino, L.: Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: promises and perils. EMBO Mol. Med. 3(11), 623–636 (2011)
Vandin, F., Upfal, E., Raphael, B.J.: De novo discovery of mutated driver pathways in cancer. Genome Res. 22(2), 375–385 (2012)
Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A., Kinzler, K.W.: Cancer genome landscapes. Science 339(6127), 1546–1558 (2013)
Weinstein, I.B.: Addiction to oncogenes-the achilles heal of cancer. Science 297(5578), 63–64 (2002)
Wood, L.D., Parsons, D.W., Jones, S., Lin, J., Sjöblom, T., Leary, R.J., Shen, D., Boca, S.M., Barber, T., Ptak, J., et al.: The genomic landscapes of human breast and colorectal cancers. Science 318(5853), 1108–1113 (2007)
Wu, H.T., Leiserson, M.D., Vandin, F., Raphael, B.J.: Comet: A statistical approach to identify combinations of mutually exclusive alterations in cancer. Cancer Res. 75(15 Supplement), 1936–1936 (2015)
Acknowledgements
The authors would like to thank Hesam Montazeri for helpful discussions.
Funding. Simona Cristea was financially supported by the Swiss National Science Foundation (Sinergia project 136247).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Cristea, S., Kuipers, J., Beerenwinkel, N. (2016). pathTiMEx: Joint Inference of Mutually Exclusive Cancer Pathways and Their Dependencies in Tumor Progression. In: Singh, M. (eds) Research in Computational Molecular Biology. RECOMB 2016. Lecture Notes in Computer Science(), vol 9649. Springer, Cham. https://doi.org/10.1007/978-3-319-31957-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-31957-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31956-8
Online ISBN: 978-3-319-31957-5
eBook Packages: Computer ScienceComputer Science (R0)