[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

pathTiMEx: Joint Inference of Mutually Exclusive Cancer Pathways and Their Dependencies in Tumor Progression

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9649))

Abstract

In recent years, high-throughput sequencing technologies have facilitated the generation of an unprecedented amount of genomic cancer data, opening the way to a more profound understanding of tumorigenesis. In this regard, two fundamental questions have emerged: (1) which alterations drive tumor progression? and (2) what are the evolutionary constraints on the order in which these alterations occur? Answering these questions is crucial for therapeutic decisions involving targeted agents, which are often based on the identification of early genetic events. Mainly because of interpatient heterogeneity, progression at the level of pathways has been shown to be more robust than progression at the level of single genes. Here, we introduce pathTiMEx, a probabilistic generative model of tumor progression at the level of mutually exclusive driver pathways. pathTiMEx employs a stochastic optimization procedure to jointly optimize the assignment of genes to pathways and the evolutionary order constraints among pathways. On cancer data, pathTiMEx recapitulates previous knowledge on tumorigenesis, such as the temporal order among pathways which include APC, KRAS and TP53 in colorectal cancer, while also proposing new biological hypotheses, such as the existence of a single early causal event consisting of the amplification of CDK4 and the deletion of CDKN2A in glioblastoma. The pathTiMEx R package is available at https://github.com/cbg-ethz/pathTiMEx. Supplementary Material for this article is available online.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Attolini, C.S.O., Cheng, Y.K., Beroukhim, R., Getz, G., Abdel-Wahab, O., Levine, R.L., Mellinghoff, I.K., Michor, F.: A mathematical framework to determine the temporal sequence of somatic genetic events in cancer. Proc. Nat. Acad. Sci. 107(41), 17604–17609 (2010)

    Article  MATH  Google Scholar 

  2. Babur, Ö., Gönen, M., Aksoy, B.A., Schultz, N., Ciriello, G., Sander, C., Demir, E.: Systematic identification of cancer driving signaling pathways based on mutual exclusivity of genomic alterations. bioRxiv, p. 009878 (2014)

    Google Scholar 

  3. Beerenwinkel, N., Eriksson, N., Sturmfels, B.: Conjunctive bayesian networks. Bernoulli 13(4), 893–909 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beerenwinkel, N., Schwarz, R.F., Gerstung, M., Markowetz, F.: Cancer evolution: mathematical models and computational inference. Syst. Biol. 64(1), e1–e25 (2015)

    Article  Google Scholar 

  5. Beerenwinkel, N., Sullivant, S.: Markov models for accumulating mutations. Biometrika, p. asp023 (2009)

    Google Scholar 

  6. Brennan, C.W., Verhaak, R.G., McKenna, A., Campos, B., Noushmehr, H., Salama, S.R., Zheng, S., Chakravarty, D., Sanborn, J.Z., Berman, S.H., et al.: The somatic genomic landscape of glioblastoma. Cell 155(2), 462–477 (2013)

    Article  Google Scholar 

  7. Cancer Genome Atlas Network and others: Comprehensive molecular portraits of human breast tumours. Nature 490(7418), 61–70 (2012)

    Article  Google Scholar 

  8. Cancer Genome Atlas Research Network: Integrated genomic analyses of ovarian carcinoma. Nature 474(7353), 609–615 (2011)

    Article  Google Scholar 

  9. Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, C.J., Heuer, M.L., Larsson, E., et al.: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2(5), 401–404 (2012)

    Article  Google Scholar 

  10. Cheng, Y.K., Beroukhim, R., Levine, R.L., Mellinghoff, I.K., Holland, E.C., Michor, F., et al.: A mathematical methodology for determining the temporal order of pathway alterations arising during gliomagenesis. PLoS Comput. Biol. 8(1), e1002337 (2012)

    Article  Google Scholar 

  11. Ciriello, G., Cerami, E., Sander, C., Schultz, N.: Mutual exclusivity analysis identifies oncogenic network modules. Genome Res. 22(2), 398–406 (2012)

    Article  Google Scholar 

  12. Constantinescu, S., Szczurek, E., Mohammadi, P., Rahnenfuhrer, J., Beerenwinkel, N.: TiMEx: a waiting time model for mutually exclusive cancer alterations. Bioinformatics (2015). doi:10.1093/bioinformatics/btv400

    Google Scholar 

  13. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B (Methodol.) 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  14. Desper, R., Jiang, F., Kallioniemi, O.P., Moch, H., Papadimitriou, C.H., Schäffer, A.A.: Inferring tree models for oncogenesis from comparative genome hybridization data. J. Comput. Biol. 6(1), 37–51 (1999)

    Article  Google Scholar 

  15. Diaz-Uriarte, R.: Identifying restrictions in the order of accumulation of mutations during tumor progression: effects of passengers, evolutionary models, and sampling. BMC Bioinformatics 16(1), 41 (2015)

    Article  Google Scholar 

  16. Farahani, H.S., Lagergren, J.: Learning oncogenetic networks by reducing to mixed integer linear programming. Plos One 8(6), e65773 (2013)

    Article  Google Scholar 

  17. Fearon, E.R.: Molecular genetics of colorectal cancer. Annu. Rev. Pathol. 6, 479–507 (2011)

    Article  Google Scholar 

  18. Fearon, E.R., Vogelstein, B.: A genetic model for colorectal tumorigenesis. Cell 61(5), 759–767 (1990)

    Article  Google Scholar 

  19. Gerstung, M., Baudis, M., Moch, H., Beerenwinkel, N.: Quantifying cancer progression with conjunctive bayesian networks. Bioinformatics 25(21), 2809–2815 (2009)

    Article  Google Scholar 

  20. Gerstung, M., Eriksson, N., Lin, J., Vogelstein, B., Beerenwinkel, N.: The temporal order of genetic and pathway alterations in tumorigenesis. PloS One 6(11), e27136 (2011)

    Article  Google Scholar 

  21. Hjelm, M., Höglund, M., Lagergren, J.: New probabilistic network models and algorithms for oncogenesis. J. Comput. Biol. 13(4), 853–865 (2006)

    Article  MathSciNet  Google Scholar 

  22. Jerby-Arnon, L., Pfetzer, N., Waldman, Y.Y., McGarry, L., James, D., Shanks, E., Seashore-Ludlow, B., Weinstock, A., Geiger, T., Clemons, P.A., et al.: Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell 158(5), 1199–1209 (2014)

    Article  Google Scholar 

  23. Kim, Y.A., Cho, D.Y., Dao, P., Przytycka, T.M.: Memcover: integrated analysis of mutual exclusivity and functional network reveals dysregulated pathways across multiple cancer types. Bioinformatics 31(12), i284–i292 (2015)

    Article  Google Scholar 

  24. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lawrence, M.S., Stojanov, P., Polak, P., Kryukov, G.V., Cibulskis, K., Sivachenko, A., Carter, S.L., Stewart, C., Mermel, C.H., Roberts, S.A., et al.: Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457), 214–218 (2013)

    Article  Google Scholar 

  26. Leiserson, M.D., Blokh, D., Sharan, R., Raphael, B.J.: Simultaneous identification of multiple driver pathways in cancer. PLoS Comput. Biol. 9(5), e1003054 (2013)

    Article  Google Scholar 

  27. Levandowsky, M., Winter, D.: Distance between sets. Nature 234(5323), 34–35 (1971)

    Article  Google Scholar 

  28. Loohuis, L.O., Caravagna, G., Graudenzi, A., Ramazzotti, D., Mauri, G., Antoniotti, M., Mishra, B.: Inferring tree causal models of cancer progression with probability raising. Plos One 9(10), e108358 (2014)

    Article  Google Scholar 

  29. Luo, J., Solimini, N.L., Elledge, S.J.: Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136(5), 823–837 (2009)

    Article  Google Scholar 

  30. Madigan, D., York, J., Allard, D.: Bayesian graphical models for discrete data. In: International Statistical Review/Revue Internationale de Statistique, pp. 215–232 (1995)

    Google Scholar 

  31. Mermel, C.H., Schumacher, S.E., Hill, B., Meyerson, M.L., Beroukhim, R., Getz, G., et al.: GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12(4), R41 (2011)

    Article  Google Scholar 

  32. Ramazzotti, D., Caravagna, G., Olde-Loohuis, L., Graudenzi, A., Korsunsky, I., Mauri, G., Antoniotti, M., Mishra, B.: CAPRI: efficient inference of cancer progression models from cross-sectional data. Bioinformatics, p. btv296 (2015)

    Google Scholar 

  33. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  34. Raphael, B.J., Vandin, F.: Simultaneous inference of cancer pathways and tumor progression from cross-sectional mutation data. In: Sharan, R. (ed.) RECOMB 2014. LNCS, vol. 8394, pp. 250–264. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  35. Sakoparnig, T., Beerenwinkel, N.: Efficient sampling for bayesian inference of conjunctive bayesian networks. Bioinformatics 28(18), 2318–2324 (2012)

    Article  Google Scholar 

  36. Shanmugam, C., Jhala, N.C., Katkoori, V.R., Wan, W., Meleth, S., Grizzle, W.E., Manne, U.: Prognostic value of mucin 4 expression in colorectal adenocarcinomas. Cancer 116(15), 3577–3586 (2010)

    Article  Google Scholar 

  37. Stratton, M.R., Campbell, P.J., Futreal, P.A.: The cancer genome. Nature 458(7239), 719–724 (2009)

    Article  Google Scholar 

  38. Szczurek, E., Beerenwinkel, N.: Modeling mutual exclusivity of cancer mutations. PLoS Comput. Biol. 10(3), e1003503 (2014)

    Article  Google Scholar 

  39. Torti, D., Trusolino, L.: Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: promises and perils. EMBO Mol. Med. 3(11), 623–636 (2011)

    Article  Google Scholar 

  40. Vandin, F., Upfal, E., Raphael, B.J.: De novo discovery of mutated driver pathways in cancer. Genome Res. 22(2), 375–385 (2012)

    Article  Google Scholar 

  41. Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A., Kinzler, K.W.: Cancer genome landscapes. Science 339(6127), 1546–1558 (2013)

    Article  Google Scholar 

  42. Weinstein, I.B.: Addiction to oncogenes-the achilles heal of cancer. Science 297(5578), 63–64 (2002)

    Article  Google Scholar 

  43. Wood, L.D., Parsons, D.W., Jones, S., Lin, J., Sjöblom, T., Leary, R.J., Shen, D., Boca, S.M., Barber, T., Ptak, J., et al.: The genomic landscapes of human breast and colorectal cancers. Science 318(5853), 1108–1113 (2007)

    Article  Google Scholar 

  44. Wu, H.T., Leiserson, M.D., Vandin, F., Raphael, B.J.: Comet: A statistical approach to identify combinations of mutually exclusive alterations in cancer. Cancer Res. 75(15 Supplement), 1936–1936 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Hesam Montazeri for helpful discussions.

Funding. Simona Cristea was financially supported by the Swiss National Science Foundation (Sinergia project 136247).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niko Beerenwinkel .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 613 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Cristea, S., Kuipers, J., Beerenwinkel, N. (2016). pathTiMEx: Joint Inference of Mutually Exclusive Cancer Pathways and Their Dependencies in Tumor Progression. In: Singh, M. (eds) Research in Computational Molecular Biology. RECOMB 2016. Lecture Notes in Computer Science(), vol 9649. Springer, Cham. https://doi.org/10.1007/978-3-319-31957-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31957-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31956-8

  • Online ISBN: 978-3-319-31957-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics