Abstract
Conformal classifiers output confidence prediction regions, i.e., multi-valued predictions that are guaranteed to contain the true output value of each test pattern with some predefined probability. In order to fully utilize the predictions provided by a conformal classifier, it is essential that those predictions are reliable, i.e., that a user is able to assess the quality of the predictions made. Although conformal classifiers are statistically valid by default, the error probability of the prediction regions output are dependent on their size in such a way that smaller, and thus potentially more interesting, predictions are more likely to be incorrect. This paper proposes, and evaluates, a method for producing refined error probability estimates of prediction regions, that takes their size into account. The end result is a binary conformal confidence predictor that is able to provide accurate error probability estimates for those prediction regions containing only a single class label.
H. Linusson—This work was supported by the Swedish Foundation for Strategic Research through the project High-Performance Data Mining for Drug Effect Detection (IIS11-0053) and the Knowledge Foundation through the project Big Data Analytics by Online Ensemble Learning (20120192).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml
Bhattacharyya, S.: Confidence in predictions from random tree ensembles. Knowl. Inf. Syst. 35(2), 391–410 (2013)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Carlsson, L., Ahlberg, E., Boström, H., Johansson, U., Linusson, H.: Modifications to p-values of conformal predictors. In: Gammerman, A., Vovk, V., Papadopoulos, H. (eds.) SLDS 2015. LNCS, vol. 9047, pp. 251–259. Springer, Heidelberg (2015)
Johansson, U., Boström, H., Löfström, T.: Conformal prediction using decision trees. In: 2013 IEEE 13th International Conference on Data Mining (ICDM), pp. 330–339. IEEE (2013)
Linusson, H., Johansson, U., Boström, H., Löfström, T.: Efficiency comparison of unstable transductive and inductive conformal classifiers. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H., Sioutas, S., Makris, C. (eds.) Artificial Intelligence Applications and Innovations. IFIP AICT, vol. 437, pp. 261–270. Springer, Heidelberg (2014)
Löfström, T., Boström, H., Linusson, H., Johansson, U.: Bias reduction through conditional conformal prediction. Intell. Data Anal. 9(6), 1355–1375 (2015)
Löfström, T., Johansson, U., Boström, H.: Effective utilization of data in inductive conformal prediction using ensembles of neural networks. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2013)
Papadopoulos, H.: Inductive conformal prediction: theory and application to neural networks. Tools Artif. Intell. 18(315–330), 2 (2008)
Papadopoulos, H., Proedrou, K., Vovk, V., Gammerman, A.J.: Inductive confidence machines for regression. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 345–356. Springer, Heidelberg (2002)
Vovk, V.: Conditional validity of inductive conformal predictors. Mach. Learn. 92(2–3), 349–376 (2013)
Vovk, V., Fedorova, V., Nouretdinov, I., Gammerman, A.: Criteria of efficiency for conformal prediction. Technical report, Royal Holloway University of London, April 2014
Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World. Springer, New York (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Linusson, H., Johansson, U., Boström, H., Löfström, T. (2016). Reliable Confidence Predictions Using Conformal Prediction. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J., Wang, R. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2016. Lecture Notes in Computer Science(), vol 9651. Springer, Cham. https://doi.org/10.1007/978-3-319-31753-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-31753-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31752-6
Online ISBN: 978-3-319-31753-3
eBook Packages: Computer ScienceComputer Science (R0)