[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Canonical Multi-target Toffoli Circuits

  • Conference paper
  • First Online:
Language and Automata Theory and Applications (LATA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9618))

Included in the following conference series:

Abstract

In this paper, we study reversible circuits as cascades of multi-target Toffoli gates. This new type of gates allows to shift parts of a gate to the preceding gate within a circuit provided that a certain independence condition holds. It turns out that shifts decrease the so-called waiting degree such that shifting as long as possible always terminates and yields shift-reduced circuits. As the main result, we show that shift-reduced circuits are unique canonical representatives of their shift equivalence classes. Canonical circuits are optimal with respect to maximal and as-early-as-possible parallelism of targets within gates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MATH  Google Scholar 

  2. Chen, J.-L., Zhang, X.-Y., Wang, L.-L., Wei, X.-Y., Zhao, W.-Q.: Extended Toffoli gate implementation with photons. In: Proceeding of the 9th International Conference on Solid-State and Integrated-Circuit Technology, pp. 575–578. ICSICT (2008)

    Google Scholar 

  3. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation part I: basic concepts and double pushout approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1: Foundations, pp. 163–245. World Scientific, Singapore (1997)

    Chapter  Google Scholar 

  4. Drechsler, R., Finder, A., Wille, R.: Improving ESOP-based synthesis of reversible logic using evolutionary algorithms. In: Di Chio, C., et al. (eds.) EvoApplications 2011, Part II. LNCS, vol. 6625, pp. 151–161. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Kreowski, H.-J.: Transformation of derivation sequences in graph grammars. Proceeding of Conference Fundamentals of Computation Theory (Poznan-Kornik, Sept. 1977). LNCS, vol. 56, pp. 275–286. Springer, Heidelberg (1977)

    Chapter  Google Scholar 

  6. Kreowski, H.-J.: Manipulationen von Graphmanipulationen. Ph.D. thesis, Techni-sche Universität Berlin , Fachbereich Informatik (1978)

    Google Scholar 

  7. Kreowski, H.-J.: An axiomatic approach to canonical derivations. In: Proceedings of IFIP World Computer Congress, IFIP-Transactions, vol. A-51, pp. 348–353. North-Holland (1994)

    Google Scholar 

  8. Soeken, M., Thomsen, M.K.: White dots do matter: rewriting reversible logic circuits. In: RC 2013 Proceedings of the 5th International Conference on Reversible Computation, pp. 196–208, RC 2013, Springer, Heidelberg (2013)

    Google Scholar 

  9. Toffoli, T.: Reversible computing. In: de Bakker, W., van Leeuwen, J. (eds.) Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 85, pp. 632–644. Springer, Heidelberg (1980)

    Chapter  Google Scholar 

  10. Wille, R., Soeken, M., Otterstedt, C., Drechsler, R.: Improving the mapping of reversible circuits to quantum circuits using multiple target lines. In: Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 145–150. IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Lye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kreowski, HJ., Kuske, S., Lye, A. (2016). Canonical Multi-target Toffoli Circuits. In: Dediu, AH., Janoušek, J., Martín-Vide, C., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2016. Lecture Notes in Computer Science(), vol 9618. Springer, Cham. https://doi.org/10.1007/978-3-319-30000-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30000-9_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29999-0

  • Online ISBN: 978-3-319-30000-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics