[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SocialFM: A Social Recommender System with Factorization Machines

  • Conference paper
  • First Online:
Web-Age Information Management (WAIM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9658))

Included in the following conference series:

  • 1779 Accesses

Abstract

Exponential growth of web2.0 makes social information be an indispensable part for recommender systems to solve cold start and sparsity problems. Most of the existing matrix factorization (MF) based algorithms for social recommender systems factorize rating matrix into two low-rank matrices. In this paper, we propose an improved factorization machines (FMs) with social information, called SocialFM. Our approach can effectively simulate the influence propagation by estimating interactions between categorical variables and specifying the input feature vectors. We combine user trust value with similarity to compute the influence value between users. We also present social regularization and model regularization to impose constraint on the objective function. Our approach is a general method, which can be easily extended to incorporate other context like user mood, timestamp, location, etc. The experiment results show that our approach outperforms other state-of-the-art recommendation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)

    Article  Google Scholar 

  2. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 43–52. Morgan Kaufmann Publishers Inc. (1998)

    Google Scholar 

  3. Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for recommendation in social networks. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 135–142. ACM (2010)

    Google Scholar 

  4. Jiang, M., Cui, P., Liu, R., Yang, Q., Wang, F., Zhu, W., Yang, S.: Social contextual recommendation. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 45–54. ACM (2012)

    Google Scholar 

  5. Kabbur, S., Ning, X., Karypis, G.: Fism: factored item similarity models for top-n recommender systems. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 659–667. ACM (2013)

    Google Scholar 

  6. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 426–434. ACM (2008)

    Google Scholar 

  7. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 8, 30–37 (2009)

    Article  Google Scholar 

  8. Ma, H., King, I., Lyu, M.R.: Learning to recommend with social trust ensemble. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 203–210. ACM (2009)

    Google Scholar 

  9. Ma, H., Yang, H., Lyu, M.R., King, I.: Sorec: social recommendation using probabilistic matrix factorization. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 931–940. ACM (2008)

    Google Scholar 

  10. Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social regularization. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 287–296. ACM (2011)

    Google Scholar 

  11. Mayer, R.C., Davis, J.H., Schoorman, F.D.: An integrative model of organizational trust. Acad. Manag. Rev. 20(3), 709–734 (1995)

    Google Scholar 

  12. Mnih, A., Salakhutdinov, R.: Probabilistic matrix factorization. Adv. Neural Inf. Process. Syst. 20, 1257–1264 (2007)

    Google Scholar 

  13. Rendle, S.: Factorization machines. In: 2010 IEEE 10th International Conference on Data Mining (ICDM), pp. 995–1000. IEEE (2010)

    Google Scholar 

  14. Rendle, S.: Factorization machines with libFM. ACM Trans. Intell Syst. Technol. (TIST) 3(3), 57 (2012)

    Google Scholar 

  15. Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for personalized tag recommendation. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 81–90. ACM (2010)

    Google Scholar 

  16. Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58 (1997)

    Article  Google Scholar 

  17. Salakhutdinov, R., Mnih, A.: Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In: Proceedings of the 25th International Conference on Machine Learning, pp. 880–887. ACM (2008)

    Google Scholar 

  18. Xiong, L., Chen, X., Huang, T.K., Schneider, J.G., Carbonell, J.G.: Temporal collaborative filtering with Bayesian probabilistic tensor factorization. In: SIAM SDM, vol. 10, pp. 211–222. (2010)

    Google Scholar 

  19. Yang, B., Lei, Y., Liu, D., Liu, J.: Social collaborative filtering by trust. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 2747–2753. AAAI Press (2013)

    Google Scholar 

  20. Yang, X., Steck, H., Liu, Y.: Circle-based recommendation in online social networks. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1267–1275. ACM (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juming Zhou , Dong Wang , Yue Ding or Litian Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhou, J., Wang, D., Ding, Y., Yin, L. (2016). SocialFM: A Social Recommender System with Factorization Machines. In: Cui, B., Zhang, N., Xu, J., Lian, X., Liu, D. (eds) Web-Age Information Management. WAIM 2016. Lecture Notes in Computer Science(), vol 9658. Springer, Cham. https://doi.org/10.1007/978-3-319-39937-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39937-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39936-2

  • Online ISBN: 978-3-319-39937-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics