[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Grouping Like-Minded Users for Ratings’ Prediction

  • Conference paper
  • First Online:
Intelligent Decision Technologies 2016 (IDT 2016)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 56))

Included in the following conference series:

Abstract

Regarding the huge amount of products, sites, information, etc., finding the appropriate need of a user is a very important task. Recommendation Systems (RS) guide users in a personalized way to objects of interest within a large space of possible options. This paper presents an algorithm for recommending movies. We break the recommendation task into two steps: (1) Grouping Like-Minded users, and (2) create model for each group to predict user-movie ratings. In the first step we use the Principal Component Analysis to retrieve latent groups of similar users. In the second step, we employ three different regression algorithms to build models and predict ratings. We evaluate our results against the SVD++ algorithm and validate the results by employing the MAE and RMSE measures. The obtained results show that the algorithm presented gives an improvement in the MAE and the RMSE of about 0.42 and 0.5201 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.netflix.com/.

  2. 2.

    https://www.tripadvisor.com/.

  3. 3.

    http://www.amazon.fr.

  4. 4.

    http://www.imdb.com.

  5. 5.

    http://alias-i.com/lingpipe/index.html.

  6. 6.

    https://code.google.com/p/pyrsvd/.

  7. 7.

    The network around a single node (ego).

  8. 8.

    http://www.cs.waikato.ac.nz/ml/weka/.

  9. 9.

    http://grouplens.org/datasets/movielens/.

  10. 10.

    https://movielens.org.

References

  1. Blei, D.M., Andrew, Y., Ng., Jordan, M.I., Lafferty, J.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 2003 (2003)

    Google Scholar 

  2. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithm for collaborative filtering. In: Proceedings of the 14th Conference on UAI, pp. 43–52 (1998)

    Google Scholar 

  3. Burke, R.: The Adaptive Web, pp. 377–408. Springer, Heidelberg (2007)

    Google Scholar 

  4. Fouss, F., Pirotte, A., Renders, J.M., Saerens, M.: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans. Knowl. Data Eng. 19(3), 355–369 (2007)

    Google Scholar 

  5. Golbeck, J., Hendler, J.: Filmtrust: movie recommendations using trust in web-based social networks. In: CCNC 2006. 3rd IEEE, vol. 1, pp. 282–286

    Google Scholar 

  6. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: a constant time collaborative filtering algorithm. Inf. Retrieval 4(2), 133–151 (2001)

    Article  MATH  Google Scholar 

  7. Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., von Wilamowitz-Moellendorff, M.: Gumo -the general user model ontology. In: User Modeling (2005)

    Google Scholar 

  8. Hofmann, T.: Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. 89–115 (2004)

    Google Scholar 

  9. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989). July

    Article  Google Scholar 

  10. Jaffali, S., Ameur, H., Jamoussi, S., Ben Hamadou, A.: Glio: a new method for grouping like-minded users. In: Transactions on Computational Collective Intelligence XVIII. LNCS, vol. 9240, pp. 44–66. Springer, Heidelberg (2015)

    Google Scholar 

  11. Jaffali, S., Jamoussi, S.: Principal component analysis neural network for textual document categorization and dimension reduction. In: 6th International Conference on SETIT, pp. 835–839 (2012)

    Google Scholar 

  12. Khabbaz, M., Lakshmanan, L.V.S.: Toprecs: top-k algorithms for item-based collaborative filtering. In: Proceedings of the 14th International Conference on Extending Database Technology, EDBT/ICDT ’11, pp. 213–224. ACM (2011)

    Google Scholar 

  13. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD, pp. 426–434. ACM (2008)

    Google Scholar 

  14. Koren, Y.: The bellkor solution to the netflix grand prize. Netflix prize documentation (2009)

    Google Scholar 

  15. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Recommender Systems Handbook, pp. 77–118. Springer, US (2015)

    Google Scholar 

  16. Kumar, R., Verma, B.K., Rastogi, S.S.: Social popularity based SVD++ recommender system. Int. J. Comput. Appl. 33–37 (2014)

    Google Scholar 

  17. Lu, Z., Shen, H.: A security-assured accuracy-maximised privacy preserving collaborative filtering recommendation algorithm. In: Proceedings of the 19th International Database Engineering and Applications Symposium, Japan, pp. 72–80 (2015)

    Google Scholar 

  18. Paterek, A.: Improving regularized singular value decomposition for collaborative filtering. In: Proceedings KDD Cup Workshop at SIGKDD’07, pp. 39–42 (2007)

    Google Scholar 

  19. Quinlan, J.R.: Learning with continuous classes. In: Proceedings of the Australian Joint Conference on Artificial Intelligence, pp. 343–348. World Scientific (1992)

    Google Scholar 

  20. Raîche, G., Walls, T.A., Magis, D., Riopel, M., Blais, J.: Non-graphical solutions for cattells scree test. Methodol.: Eur. J. Res. Methods Behav. Soc. Sci. 9(1), 23–29 (2013)

    Google Scholar 

  21. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted boltzmann machines for collaborative filtering. In: Proceedings of the 24th International Conference on Machine Learning, ICML ’07, pp. 791–798, New York, NY, USA. ACM (2007)

    Google Scholar 

  22. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.T.: Application of dimensionality reduction in recommender system—a case study. In: ACM WebKDD Workshop (2000)

    Google Scholar 

  23. Sch\(\ddot{o}\)lkopf, B., Smola, Williamson, A.J., R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12(5), 1207–1245 (2000)

    Google Scholar 

  24. Vapnik, V.N.: Statistical Learning Theory. Wiley (1998)

    Google Scholar 

  25. Yang, X., Liu, Y., Guo, Y., Steck, H.: A survey of collaborative filtering based social recommender systems. Comput. Commun. (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soufiene Jaffali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jaffali, S., Jamoussi, S., Hamadou, A.B., Smaili, K. (2016). Grouping Like-Minded Users for Ratings’ Prediction. In: Czarnowski, I., Caballero, A., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies 2016. IDT 2016. Smart Innovation, Systems and Technologies, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-39630-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39630-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39629-3

  • Online ISBN: 978-3-319-39630-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics