[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Hybrid Multi-objective Evolutionary Approach for Optimal Path Planning of a Hexapod Robot

A Preliminary Study

  • Conference paper
  • First Online:
Hybrid Metaheuristics (HM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9668))

Included in the following conference series:

Abstract

Hexapod robots are six-legged robotic systems, which have been widely investigated in the literature for various applications including exploration, rescue, and surveillance. Designing hexapod robots requires to carefully considering a number of different aspects. One of the aspects that require careful design attention is the planning of leg trajectories. In particular, given the high demand for fast motion and high-energy autonomy it is important to identify proper leg operation paths that can minimize energy consumption while maximizing the velocity of the movements. In this frame, this paper presents a preliminary study on the application of a hybrid multi-objective optimization approach for the computer-aided optimal design of a legged robot. To assess the methodology, a kinematic and dynamic model of a leg of a hexapod robot is proposed as referring to the main design parameters of a leg. Optimal criteria have been identified for minimizing the energy consumption and efficiency as well as maximizing the walking speed and the size of obstacles that a leg can overtake. We evaluate the performance of the hybrid multi-objective evolutionary approach to explore the design space and provide a designer with an optimal setting of the parameters. Our simulations demonstrate the effectiveness of the hybrid approach by obtaining improved Pareto sets of trade-off solutions as compared with a standard evolutionary algorithm. Computational costs show an acceptable increase for an off-line path planner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tedeschi, F., Carbone, G.: Design issues for hexapod walking robots. Robotics 3, 181–206 (2014)

    Article  Google Scholar 

  2. International Federation of Robotics. http://www.ifr.org/

  3. Chavez-Clemente, D.: Gait optimization for multi-legged walking robots, with application to a lunar hexapod (2011). http://purl.stanford.edu/px063cb7934Includes

  4. Carbone, G., Ceccarelli, M.: A mechanical design of a low-cost easy-operation anthropomorphic wheeled leg for walking machines. Int. J. Robot. Manag. 9, 3–8 (2004)

    Google Scholar 

  5. De Santos, P.G., Garcia, E., Estremera, J.: Quadrupedal locomotion: an introduction to the control of four-legged robots. Springer, London (2006)

    MATH  Google Scholar 

  6. Krotkov, E.P., Simmons, R.G., Whittaker, W.L.: Ambler: performance of a six-legged planetary rover. Acta Astronaut. 35, 75–81 (1995)

    Article  Google Scholar 

  7. Nonami, K., Barai, R.K., Irawan, A., Daud, M.R.: Hydraulically Actuated Hexapod Robots: Design, Implementation and Control. Intelligent Systems, Control and Automation: Science and Engineering, vol. 66. Springer, Heidelberg (2014)

    Google Scholar 

  8. Silva, M.F., Machado, J.A.T., Barbosa, R.S.: Complex-order dynamics in hexapod locomotion. Sig. Process. 86, 2785–2793 (2006)

    Article  MATH  Google Scholar 

  9. Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A: Evolutionary Algorithms for Solving Multi-objective Problems, 2nd edn. Springer, Heidelberg (2007)

    Google Scholar 

  10. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)

    MATH  Google Scholar 

  11. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26, 369–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ascia, G., Catania, V., Di Nuovo, A.G., Palesi, M., Patti, D.: Performance evaluation of efficient multi-objective evolutionary algorithms for design space exploration of embedded computer systems. Appl. Soft Comput. 11, 382–398 (2011)

    Article  Google Scholar 

  13. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello, C.A.C.: A survey of multiobjective evolutionary algorithms for data mining: part i. IEEE Trans. Evol. Comput. 18, 4–19 (2014)

    Article  Google Scholar 

  14. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello, C.A.C.: Survey of multiobjective evolutionary algorithms for data mining: part II. IEEE Trans. Evol. Comput. 18(1), 20–35 (2014)

    Article  Google Scholar 

  15. Di Nuovo, A., Palesi, M., Catania, V.: Multi-objective evolutionary fuzzy clustering for high-dimensional problems. In: IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2007, pp. 1–6. IEEE (2007)

    Google Scholar 

  16. Di Nuovo, A., Catania, V.: An evolutionary fuzzy c-means approach for clustering of bio-informatics databases. In: IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2008. (IEEE World Congress on Computational Intelligence), pp. 2077–2082. IEEE (2008)

    Google Scholar 

  17. Ponsich, A., Jaimes, A.L., Coello, C.A.C.: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications. IEEE Trans. Evol. Comput. 17, 321–344 (2013)

    Article  Google Scholar 

  18. Deb, K., Tiwari, S.: Multi-objective optimization of a leg mechanism using genetic algorithms. Eng. Optim. 37, 325–350 (2005)

    Article  Google Scholar 

  19. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  20. Fleming, P.J., Pashkevich, A.P.: Application of multi-objective optimisation to compensator design for SISO control systems. Electron. Lett. 22(1), 258–259 (1986)

    Article  Google Scholar 

  21. Schittkowski, K.: NLPQL: A fortran subroutine solving constrained nonlinear programming problems. Ann. Oper. Res. 5, 485–500 (1986)

    Article  MathSciNet  Google Scholar 

  22. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

  23. Tedeschi, F., Carbone, G.: Design of hexapod walking robots: background and challenges. In: Habib, M.K. (ed.) Handbook of Research on Advancements in Robotics and Mechatronics, pp. 527–566. IGI Global (2015)

    Google Scholar 

  24. Di Nuovo, A.G., Ascia, G., Catania, V.: A study on evolutionary multi-objective optimization with fuzzy approximation for computational expensive problems. In: Coello, C.A., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 102–111. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Carbone, G., Shrot, A., Ceccarelli, M.: Operation strategy for a low-cost easy operation Cassino Hexapod. Appl. Bionics Biomech. 4, 149–156 (2007)

    Article  Google Scholar 

  26. Carbone, G., Tedeschi, F.: A low cost control architecture for Cassino Hexapod II. Int. J. Mech. Control. 14, 19–24 (2013)

    Google Scholar 

  27. Carbone, G., Ceccarelli, M., Oliveira, P., Saramago, S.: Carvalho, J, F.: An optimum path planning for Cassino parallel manipulator by using inverse dynamics. Robotica 6, 229–239 (2008)

    Google Scholar 

  28. Carbone, G., Tedeschi, F., Gallozzi, A., Cigol, M.: A robotic mobile platform for service tasks in cultural heritage. Int. J. Adv. Robot. Syst. 12, 1–10 (2015)

    Google Scholar 

  29. Frankovský, P., Hroncová, D., Delyová, I., Hudák, P.: Inverse and forward dynamic analysis of two link manipulator. In: Procedia Engineering, pp. 158–163 (2012)

    Google Scholar 

  30. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Carbone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Carbone, G., Di Nuovo, A. (2016). A Hybrid Multi-objective Evolutionary Approach for Optimal Path Planning of a Hexapod Robot. In: Blesa, M., et al. Hybrid Metaheuristics. HM 2016. Lecture Notes in Computer Science(), vol 9668. Springer, Cham. https://doi.org/10.1007/978-3-319-39636-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39636-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39635-4

  • Online ISBN: 978-3-319-39636-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics