[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

R2U2: Monitoring and Diagnosis of Security Threats for Unmanned Aerial Systems

  • Conference paper
  • First Online:
Runtime Verification

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9333))

Abstract

We present R2U2, a novel framework for runtime monitoring of security properties and diagnosing of security threats on-board Unmanned Aerial Systems (UAS). R2U2, implemented in FPGA hardware, is a real-time, Realizable, Responsive, Unobtrusive Unit for security threat detection. R2U2 is designed to continuously monitor inputs from the GPS and the ground control station, sensor readings, actuator outputs, and flight software status. By simultaneously monitoring and performing statistical reasoning, attack patterns and post-attack discrepancies in the UAS behavior can be detected. R2U2 uses runtime observer pairs for linear and metric temporal logics for property monitoring and Bayesian networks for diagnosis of security threats. We discuss the design and implementation that now enables R2U2 to handle security threats and present simulation results of several attack scenarios on the NASA DragonEye UAS.

This work was supported in part by NASA ARMD 2014 I3AMT Seedling Phase I, NNX12AK33A and the Austrian Josef Ressel Center (VECS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Conversation with an Ikhana/Global Hawk pilot, NASA, 2011.

  2. 2.

    In this paper, we do not model attack scenarios via compromised flight software.

  3. 3.

    http://www.xilinx.com.

  4. 4.

    http://www.ae.utexas.edu/news/features/humphreys-research-group.

References

  1. Adapteva: The Parallella Board. https://www.parallella.org/board

  2. Ahmed, A., Lisitsa, A., Dixon, C.: TeStID: a high performance temporal intrusion detection system. In: Proceedings of the ICIMP 2013, pp. 20–26 (2013)

    Google Scholar 

  3. APM:Plane, Open Source Fixed-Wing Aircraft UAV. http://plane.ardupilot.com

  4. Bilge, L., Dumitras, T.: Before we knew it: an empirical study of zero-day attacks in the real world. In: Proceedings of the CCS 2012, pp. 833–844 (2012)

    Google Scholar 

  5. Bushnell, D., Denney, E., Enomoto, F., Pai, G., Schumann, J.: Preliminary recommendations for the collection, storage, and analysis of UAS safety data. Technical report NASA/TM-2013-216624, NASA Ames Research Center (2013)

    Google Scholar 

  6. Eulich, W.: Did Iran just down a US drone by ‘spoofing’? Christian Science Monitor (2012). http://www.csmonitor.com/World/Security-Watch/terrorism-security/2012/1204/Did-Iran-just-down-a-US-drone-by-spoofing-video

  7. GAO: Air Traffic Control: FAA Needs a More Comprehensive Approach to Address Cybersecurity As Agency Transitions to NextGen. Technical report GAO-15-370, United States Government Accountability Office (2015). http://www.gao.gov/assets/670/669627.pdf

  8. Geist, J., Rozier, K.Y., Schumann, J.: Runtime observer pairs and Bayesian network reasoners on-board FPGAs: flight-certifiable system health management for embedded systems. In: Proceedings of the RV 2014, pp. 215–230 (2014)

    Google Scholar 

  9. Humphreys, T.: Statement on the Vulnerability of Civil Unmanned Aerial Vehicles and Other Systems to Civil GPS Spoofing. University of Texas at Austin (2012)

    Google Scholar 

  10. Javaid, A.Y., Sun, W., Devabhaktuni, V.K., Alam, M.: Cyber security threat analysis and modeling of an unmanned aerial vehicle system. In: Proceedings of the HST 2012, pp. 585–590. IEEE (2012)

    Google Scholar 

  11. JSBSim: Open Source Flight Dynamics Model. http://jsbsim.sourceforge.net

  12. Karimi, N.: Iran Drone Capture Claim: State TV Airs Images Allegedly Extracted From U.S. Aircraft (video). The World Post (2013). http://www.huffingtonpost.com/2013/02/07/iran-drone-capture-claim_n_2636745.html

  13. Kerns, A.J., Shepard, D.P., Bhatti, J.A., Humphreys, T.E.: Unmanned aircraft capture and control via GPS spoofing. J. Field Robot. 31(4), 617–636 (2014)

    Article  Google Scholar 

  14. Kim, A., Wampler, B., Goppert, J., Hwang, I., Aldridge, H.: Cyber attack vulnerabilities analysis for unmanned aerial vehicles. Infotech@Aerospace (2012)

    Google Scholar 

  15. Lu, H., Forin, A.: The Design and Implementation of P2V, An Architecture for Zero-Overhead Online Verification of Software Programs. MSR-TR-2007-99, Microsoft Research (2007). http://research.microsoft.com/apps/pubs/default.aspx?id=70470

  16. MAVLink: Micro Air Vehicle Protocol. https://github.com/mavlink

  17. MAVProxy: A UAV Ground Station Software Package for MAVLink Based Systems. http://tridge.github.io/MAVProxy

  18. Mengshoel, O.J., Chavira, M., Cascio, K., Poll, S., Darwiche, A., Uckun, S.: Probabilistic model-based diagnosis: an electrical power system case study. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 40(5), 874–885 (2010)

    Article  Google Scholar 

  19. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP runtime verification framework. Int. J. Softw. Tools Technol. Transfer 14(3), 249–289 (2012)

    Article  Google Scholar 

  20. Naldurg, P., Sen, K., Thati, P.: A temporal logic based framework for intrusion detection. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235, pp. 359–376. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Olivain, J., Goubault-Larrecq, J.: The Orchids intrusion detection tool. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 286–290. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Pearl, J.: A constraint propagation approach to probabilistic reasoning. In: Proceedings of the UAI, pp. 31–42. AUAI Press (1985)

    Google Scholar 

  23. Pellizzoni, R., Meredith, P., Caccamo, M., Rosu, G.: Hardware runtime monitoring for dependable COTS-based real-time embedded systems. In: RTSS, pp. 481–491 (2008)

    Google Scholar 

  24. Perry, S.: Subcommittee hearing: unmanned aerial system threats: exploring security implications and mitigation technologies. Committee on Homeland Security (2015). http://homeland.house.gov/hearing/subcommittee-hearing-unmanned-aerial-system-threats-exploring-security-implications-and

  25. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer pairs for system health management of real-time systems. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 357–372. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  26. Schumann, J., Mbaya, T., Mengshoel, O.J., Pipatsrisawat, K., Srivastava, A., Choi, A., Darwiche, A.: Software health management with Bayesian networks. Innovations Syst. Softw. Eng. 9(2), 1–22 (2013)

    Google Scholar 

  27. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito, C.: Towards real-time, on-board, hardware-supported sensor and software health management for unmanned aerial systems. In: Proceedings of the PHM 2013, pp. 381–401 (2013)

    Google Scholar 

  28. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito, C.: Towards real-time, on-board, hardware-supported sensor and software health management for unmanned aerial systems. Int. J. Prognostics Health Manage. 6(1), 1–27 (2015)

    Google Scholar 

  29. Shachtman, N., Axe, D.: Most U.S. drones openly broadcast secret video feeds. Wired (2012). http://www.wired.com/2012/10/hack-proof-drone/

  30. Shepard, D.P., Bhatti, J.A., Humphreys, T.E.: Drone hack. GPS World 23(8), 30–33 (2012)

    Google Scholar 

  31. USAF: Aircraft Accident Investigation: Rq-1l, s/n 96–3023. AIB Class A Aerospace Mishaps (2000). http://usaf.aib.law.af.mil/ExecSum2000/RQ-1L_Nellis_14Sep00.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johann Schumann , Patrick Moosbrugger or Kristin Y. Rozier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Schumann, J., Moosbrugger, P., Rozier, K.Y. (2015). R2U2: Monitoring and Diagnosis of Security Threats for Unmanned Aerial Systems. In: Bartocci, E., Majumdar, R. (eds) Runtime Verification. Lecture Notes in Computer Science(), vol 9333. Springer, Cham. https://doi.org/10.1007/978-3-319-23820-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23820-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23819-7

  • Online ISBN: 978-3-319-23820-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics