[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Classifier Selection Uses Decision Profiles in Binary Classification Task

  • Conference paper
  • First Online:
Image Processing and Communications Challenges 7

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 389))

Abstract

The dynamic selection of classifiers plays an important role in the creation of an ensemble of classifiers. The paper presents the dynamic selection of a posteriori probability function based on the analysis of the decision profiles. The idea of the dynamic selection is exemplified with the binary classification task. In addition, a number of experiments have been carried out on ten benchmark data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York Inc, Secaucus (2006)

    MATH  Google Scholar 

  2. Britto, A.S., Sabourin, R., Oliveira, L.E.: Dynamic selection of classifiers—a comprehensive review. Pattern Recogn. 47(11), 3665–3680 (2014)

    Article  Google Scholar 

  3. Cavalin, P.R., Sabourin, R., Suen, C.Y.: Dynamic selection approaches for multiple classifier systems. Neural Comput. Appl. 22(3–4), 673–688 (2013)

    Article  Google Scholar 

  4. Cyganek, B.: One-class support vector ensembles for image segmentation and classification. J. Math. Imaging Vision 42(2–3), 103–117 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cyganek, B., Woźniak, M.: Vehicle logo recognition with an ensemble of classifiers. In: Intelligent Information and Database Systems, Lecture Notes in Computer Science, vol. 8398, pp. 117–126. Springer (2014)

    Google Scholar 

  6. Didaci, L., Giacinto, G., Roli, F., Marcialis, G.L.: A study on the performances of dynamic classifier selection based on local accuracy estimation. Pattern Recogn. 38, 2188–2191 (2005)

    Google Scholar 

  7. Forczmański, P., Łabędź, P.: Recognition of occluded faces based on multi-subspace classification. In: Computer Information Systems and Industrial Management, Lecture Notes in Computer Science, vol. 8104, pp. 148–157. Springer (2013)

    Google Scholar 

  8. Frank, A., Asuncion, A.: UCI machine learning repository (2010). http://archive.ics.uci.edu/ml

  9. Frejlichowski, D.: An algorithm for the automatic analysis of characters located on car license plates. In: Image Analysis and Recognition, Lecture Notes in Computer Science, vol. 7950, pp. 774–781. Springer (2013)

    Google Scholar 

  10. Giacinto, G., Roli, F.: An approach to the automatic design of multiple classifier systems. Pattern Recogn. Lett. 22, 25–33 (2001)

    Article  MATH  Google Scholar 

  11. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  12. Ho, T.K., Hull, J.J., Srihari, S.N.: Decision combination in multiple classifier systems. IEEE Trans. Pattern Anal. Mach. Intell. 16(1), 66–75 (1994)

    Article  Google Scholar 

  13. Jackowski, K., Woźniak, M.: Method of classifier selection using the genetic approach. Expert Syst. 27(2), 114–128 (2010)

    Article  Google Scholar 

  14. Jackowski, K., Krawczyk, B., Woźniak, M.: Improved adaptive splitting and selection: the hybrid training method of a classifier based on a feature space partitioning. Int. J. Neural Syst. 24(03) (2014)

    Google Scholar 

  15. Kittler, J., Alkoot, F.M.: Sum versus vote fusion in multiple classifier systems. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 110–115 (2003)

    Article  Google Scholar 

  16. Kuncheva, L.I.: A theoretical study on six classifier fusion strategies. IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 281–286 (2002)

    Article  Google Scholar 

  17. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, New York (2004)

    Google Scholar 

  18. Lam, L., Suen, C.Y.: Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Trans. Syst. Man Cybern. Part A 27(5), 553–568 (1997)

    Article  Google Scholar 

  19. Przewoźniczek, M., Walkowiak, K., Woźniak, M.: Optimizing distributed computing systems for k-nearest neighbours classifiers-evolutionary approach. Logic J. IGPL 357–372 (2010)

    Google Scholar 

  20. Ranawana, R., Palade, V.: Multi-classifier systems: review and a roadmap for developers. Int. J. Hybrid Intell. Syst. 3(1), 35–61 (2006)

    Article  MATH  Google Scholar 

  21. Rejer, I.: Genetic algorithms in eeg feature selection for the classification of movements of the left and right hand. In: Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013. Advances in Intelligent Systems and Computing, vol. 226, pp. 579–589. Springer (2013)

    Google Scholar 

  22. Ruta, D., Gabrys, B.: Classifier selection for majority voting. Inf. Fusion 6(1), 63–81 (2005)

    Article  MATH  Google Scholar 

  23. Smętek, M., Trawiński, B.: Selection of heterogeneous fuzzy model ensembles using self-adaptive genetic algorithms. New Gener. Comput. 29(3), 309–327 (2011)

    Article  Google Scholar 

  24. Suen, C.Y., Legault, R., Nadal, C.P., Cheriet, M., Lam, L.: Building a new generation of handwriting recognition systems. Pattern Recogn. Lett. 14(4), 303–315 (1993)

    Article  Google Scholar 

  25. Woloszyński, T., Kurzyński, M.: A probabilistic model of classifier competence for dynamic ensemble selection. Pattern Recogn. 44(10–11), 2656–2668 (2011)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Polish National Science Center under the grant no. DEC-2013/09/B/ST6/02264 and by the statutory funds of the Department of Systems and Computer Networks, Wroclaw University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Burduk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Baczyńska, P., Burduk, R. (2016). Classifier Selection Uses Decision Profiles in Binary Classification Task. In: Choraś, R. (eds) Image Processing and Communications Challenges 7. Advances in Intelligent Systems and Computing, vol 389. Springer, Cham. https://doi.org/10.1007/978-3-319-23814-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23814-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23813-5

  • Online ISBN: 978-3-319-23814-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics