Abstract
In this work, we make the case for using volumetric information for shape reconstruction and recognition from noisy depth images for robotic manipulation. We provide an efficient algorithm, Voxel Depth Carving (a variant of Occupancy Grid Mapping) which accomplishes this goal. Real-world experiments with lasers, RGB-D cameras, and simulated sensors in both 2D and 3D verify the effectiveness of our algorithm in comparison to traditional point-cloud based methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Besl, P.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. (1992)
Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n-d image segmentation. Int. J. Comput. Vision 70(2), 109–131 (2006)
Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Syst. J. 4(1), 25–30 (1965)
Canterakis, N.: 3D Zernike moments and Zernike affine invariants for 3D image analysis and recognition. In: 11th ICSA (1999)
Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer (1989) (Long Beach, CA)
Ford, L.R., Fulkerson, D.R., A simple algorithm for finding maximal network flows and an application to the hitchcock problem. Can. J. Math. (1957)
Goldfeder, C.: Data-driven grasping. Auton. Robots 31(1), 1–20 (2011)
Herrmann, M.: Exploiting passthrough information for multi-view object reconstruction with sparse and noisy laser data (2010)
Hinterstoisser, S., Lepetit, V., Ilic, S.: Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes. ACCV 7724, 548–562 (2013)
Hoiem, D., Savarese, S.: Representations and techniques for 3D object recognition and scene interpretation. Synth. Lect. AI Mach. Learn. 5(5), 1–169 (2011)
Hornung, A., Kobbelt, L.: Robust reconstruction of watertight 3D models from non-uniformly sampled point clouds without normal information. SGP (2006)
Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robots 34(3), 189–206 (2013)
Hsiao, K., Ciocarlie, M., Brook, P.: Bayesian grasp planning. ICRA 2011, (2011)
Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 66–70 (1962)
Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. ICCV 1, (1999)
Lai, K., Fox, D.: Object recognition in 3D point clouds using web data and domain adaptation. IJRR 29(8), 1019–1037 (2010)
Laurentini, A.: The visual hull concept for silhouette-based image understanding. IEEE Trans. Pattern Anal. Mach. Intell. 16(2) (1994)
Li, Y., Wu, X., Chrysathou, Y., Sharf, A.: GlobFit: consistently fitting primitives by discovering global relations. ACM Trans. Graph. (2011)
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM Siggraph 21(4), 163–169 (1987)
Marton, Z.C., Rusu, R.B., Beetz, M.: On fast surface reconstruction methods for large and noisy point clouds. ICRA 3218–3223 (2009)
Nguyen, C.V., Izadi, S., Lovell, D.: Modeling kinect sensor noise for improved 3D reconstruction and tracking. In: 3D Imaging, Modeling, pp. 524–530 (2012)
Olsen, M.J.: Avoiding indicents with incidence. LIDAR Mag. 2, 2 (2012)
Pajarola, R., Guggeri, F., Scateni, R.: Shape reconstruction from raw point clouds using depth carving. Eurographics (2012)
Prasad, D.K.: Survey of the problem of object detection in real images. IJIP 6, 441–466 (2012)
Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). ICRA 1–4 (2011)
Shewchuk, J.R., Brien, J.F.O.: Spectral surface reconstruction from noisy point clouds. SGP 14 (2004)
Shilane, P., Min, P.: The princeton shape benchmark. Shape Model. 08540 (2004)
Staples-moore, A.: Network flows and the max-flow min-cut theorem
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Klingensmith, M., Herrmann, M., Srinivasa, S.S. (2016). Object Modeling and Recognition from Sparse, Noisy Data via Voxel Depth Carving. In: Hsieh, M., Khatib, O., Kumar, V. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-319-23778-7_46
Download citation
DOI: https://doi.org/10.1007/978-3-319-23778-7_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23777-0
Online ISBN: 978-3-319-23778-7
eBook Packages: EngineeringEngineering (R0)