Abstract
Incomplete data are common and require special techniques. The essential techniques are: marginalisation, imputation, and rough sets. The paper presents the imputation by inversion of the neuro-fuzzy system. First the neuro-fuzzy systems is trained with complete data. Next the system is inverted and the missing values are imputed. The complete and imputed data are used to train the final neuro-fuzzy system. The technique is limited to data items with one missing value. The paper is accompanied by numerical examples and statistical verification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acuña, E., Rodriguez, C.: The treatment of missing values and its effect on classifier accuracy. In: Banks, D., McMorris, F., Arabie, P., Gaul, W. (eds.) Classification, Clustering, and Data Mining Applications, pp. 639–647. Studies in Classification, Data Analysis, and Knowledge Organisation, Springer, Berlin (2004)
Batista, G.E.A.P.A., Monard, M.C.: An analysis of four missing data treatment methods for supervised learning. Appl. Artif. Intell. 17(5–6), 519–533 (2003)
Box, G.E.P., Jenkins, G.: Time Series Analysis Forecasting and Control. Holden-Day Incorporated, Oakland, California (1970)
Chen, J.Q., Xi, Y.G., Zhang, Z.J.: A clustering algorithm for fuzzy model identification. Fuzzy Sets Syst. 98(3), 319–329 (1998)
Cooke, M., Green, P., Josifovski, L., Vizinho, A.: Robust automatic speech recognition with missing and unreliable acoustic data. Speech Commun. 34, 267–285 (2001)
Czogala, E., Leski, J.: Fuzzy and Neuro-Fuzzy Intelligent Systems. Series in Fuzziness and Soft Computing, Physica-Verlag, A Springer-Verlag company, Heidelberg, New York (2000)
Filev, D.P.: Inversion of fuzzy models-practical issues. In: ICSFP, vol. 2, pp. 1658–1663. Anchorage, AK (1998)
Frank, A., Asuncion, A.: UCI machine learning repository (2010)
Gabriel, T.R., Berthold, M.R.: Missing values in fuzzy rule induction. In: SMC, vol. 2, pp. 1473–1476 (2005)
Galichet, S., Boukezzoula, R., Foulloy, L.: Explicit analytical formulation and exact inversion of decomposable fuzzy systems with singleton consequents. Fuzzy Sets Syst. 146, 421–436 (2004)
Grzymala-Busse, J., Goodwin, L., Grzymala-Busse, W., Zheng, X.: Handling missing attribute values in preterm birth data sets. In: Slezak, D., Yao, J., Peters, J., Ziarko, W., Hu, X. (eds.) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. LNCS, vol. 3642, pp. 342–351. Springer, Berlin (2005)
Grzymala-Busse, J.W.: On the unknown attribute values in learning from examples. In: Ras, Z., Zemankova, M. (eds.) Methodologies for Intelligent Systems. LNCS, vol. 542, pp. 368–377. Springer, Berlin (1991)
Hathaway, R., Bezdek, J.: Fuzzy c-means clustering of incomplete data. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 31(5), 735–744 (2001)
Himmelspach, L., Conrad, S.: Fuzzy clustering of incomplete data based on cluster dispersion. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 59–68. Springer, Berlin (2010)
Korytkowski, M., Nowicki, R., Scherer, R., Rutkowski, L.: Ensemble of rough-neuro-fuzzy systems for classification with missing features. In: FUZZ-IEEE, pp. 1745–1750. Hong Kong (2008)
Kumbasar, T., Eksin, İ., Güzelkaya, M., Yeşil, E.: Big bang big crunch optimization method based fuzzy model inversion. MICAI 2008: Advances in Artificial Intelligence. LNCS, pp. 737–740. Springer, Berlin (2008)
Kumbasar, T., Eksin, İ., Güzelkaya, M., Yeşil, E.: Exact inversion of decomposable interval type-2 fuzzy logic systems. Int. J. Approximate Reasoning 54, 253–272 (2013)
Matyja, A., Simiński, K.: Comparison of algorithms for clustering incomplete data. Found. Comput. Decis. Sci. 39(2), 107–127 (2014)
Mundfrom, D.J., Whitcomb, A.: Imputing missing values: the effect on the accuracy of classification. Multiple Linear Regres. Viewpoints 25(1), 13–19 (1998)
Nowicki, R.K.: Rough-neuro-fuzzy structures for classification with missing data. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39(6), 1334–1347 (2009)
Ridders, C.: A new algorithm for computing a single root of a real continuous function. IEEE Trans. Circ. Syst. 26, 979–980 (1979)
Sikora, M., Simiński, K.: Comparison of incomplete data handling techniques for neuro-fuzzy systems. Comput. Sci. 15(4), 441–458 (2014)
Sikora, M., Krzykawski, D.: Application of data exploration methods in analysis of carbon dioxide emission in hard-coal mines dewater pump stations. Mechanizacja i Automatyzacja Gornictwa 413(6) (2005)
Sikora, M., Sikora, B.: Application of machine learning for prediction a methane concentration in a coal-mine. Arch. Min. Sci. 51(4), 475–492 (2006)
Simiński, K.: Neuro-rough-fuzzy approach for regression modelling from missing data. Int. J. Appl. Math. Comput. Sci. 22(2), 461–476 (2012)
Simiński, K.: Clustering with missing values. Fundamenta Informaticae 123(3), 331–350 (2013)
Simiński, K.: Rough fuzzy subspace clustering for data with missing values. Comput. Inf. 33(1), 131–153 (2014)
Simiński, K.: Rough subspace neuro-fuzzy system. Fuzzy Sets Syst. 269, 30–46 (2015)
Timm, H., Kruse, R.: Fuzzy cluster analysis with missing values. In: NAFIPS, pp. 242–246. Pensacola Beach, FL (1998)
Varkonyi-Koczy, A., Almos, A., Kovacshazy, T.: Genetic algorithms in fuzzy model inversion. In: FUZZ-IEEE, vol. 3, pp. 1421–1426 (1999)
Wagstaff, K.L., Laidler, V.G.: Making the most of missing values: object clustering with partial data in astronomy. In: ADASS XIV, vol. 347, pp. 172–176. Pasadena, California, USA (2005)
Xu, C., Shin, Y.: A fuzzy inverse model construction method for general monotonic multi-input-single-output (MISO) systems. IEEE Trans. Fuzzy Syst. 16(5), 1216–1231 (2008)
Yeh, I.C.: Modeling of strength of high-performance concrete using artificial neural networks. Cement Concr. Res. 28(12), 1797–1808 (1998)
Zhang, S.: Parimputation: from imputation and null-imputation to partially imputation. IEEE Intell. Inf. Bull. 9(1), 32–38 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Siminski, K. (2016). Imputation of Missing Values by Inversion of Fuzzy Neuro-System. In: Gruca, A., Brachman, A., Kozielski, S., Czachórski, T. (eds) Man–Machine Interactions 4. Advances in Intelligent Systems and Computing, vol 391. Springer, Cham. https://doi.org/10.1007/978-3-319-23437-3_49
Download citation
DOI: https://doi.org/10.1007/978-3-319-23437-3_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23436-6
Online ISBN: 978-3-319-23437-3
eBook Packages: EngineeringEngineering (R0)