[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Imputation of Missing Values by Inversion of Fuzzy Neuro-System

  • Conference paper
  • First Online:
Man–Machine Interactions 4

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 391))

Abstract

Incomplete data are common and require special techniques. The essential techniques are: marginalisation, imputation, and rough sets. The paper presents the imputation by inversion of the neuro-fuzzy system. First the neuro-fuzzy systems is trained with complete data. Next the system is inverted and the missing values are imputed. The complete and imputed data are used to train the final neuro-fuzzy system. The technique is limited to data items with one missing value. The paper is accompanied by numerical examples and statistical verification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acuña, E., Rodriguez, C.: The treatment of missing values and its effect on classifier accuracy. In: Banks, D., McMorris, F., Arabie, P., Gaul, W. (eds.) Classification, Clustering, and Data Mining Applications, pp. 639–647. Studies in Classification, Data Analysis, and Knowledge Organisation, Springer, Berlin (2004)

    Google Scholar 

  2. Batista, G.E.A.P.A., Monard, M.C.: An analysis of four missing data treatment methods for supervised learning. Appl. Artif. Intell. 17(5–6), 519–533 (2003)

    Google Scholar 

  3. Box, G.E.P., Jenkins, G.: Time Series Analysis Forecasting and Control. Holden-Day Incorporated, Oakland, California (1970)

    MATH  Google Scholar 

  4. Chen, J.Q., Xi, Y.G., Zhang, Z.J.: A clustering algorithm for fuzzy model identification. Fuzzy Sets Syst. 98(3), 319–329 (1998)

    Article  MathSciNet  Google Scholar 

  5. Cooke, M., Green, P., Josifovski, L., Vizinho, A.: Robust automatic speech recognition with missing and unreliable acoustic data. Speech Commun. 34, 267–285 (2001)

    Article  MATH  Google Scholar 

  6. Czogala, E., Leski, J.: Fuzzy and Neuro-Fuzzy Intelligent Systems. Series in Fuzziness and Soft Computing, Physica-Verlag, A Springer-Verlag company, Heidelberg, New York (2000)

    Google Scholar 

  7. Filev, D.P.: Inversion of fuzzy models-practical issues. In: ICSFP, vol. 2, pp. 1658–1663. Anchorage, AK (1998)

    Google Scholar 

  8. Frank, A., Asuncion, A.: UCI machine learning repository (2010)

    Google Scholar 

  9. Gabriel, T.R., Berthold, M.R.: Missing values in fuzzy rule induction. In: SMC, vol. 2, pp. 1473–1476 (2005)

    Google Scholar 

  10. Galichet, S., Boukezzoula, R., Foulloy, L.: Explicit analytical formulation and exact inversion of decomposable fuzzy systems with singleton consequents. Fuzzy Sets Syst. 146, 421–436 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grzymala-Busse, J., Goodwin, L., Grzymala-Busse, W., Zheng, X.: Handling missing attribute values in preterm birth data sets. In: Slezak, D., Yao, J., Peters, J., Ziarko, W., Hu, X. (eds.) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. LNCS, vol. 3642, pp. 342–351. Springer, Berlin (2005)

    Chapter  Google Scholar 

  12. Grzymala-Busse, J.W.: On the unknown attribute values in learning from examples. In: Ras, Z., Zemankova, M. (eds.) Methodologies for Intelligent Systems. LNCS, vol. 542, pp. 368–377. Springer, Berlin (1991)

    Chapter  Google Scholar 

  13. Hathaway, R., Bezdek, J.: Fuzzy c-means clustering of incomplete data. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 31(5), 735–744 (2001)

    Article  Google Scholar 

  14. Himmelspach, L., Conrad, S.: Fuzzy clustering of incomplete data based on cluster dispersion. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 59–68. Springer, Berlin (2010)

    Google Scholar 

  15. Korytkowski, M., Nowicki, R., Scherer, R., Rutkowski, L.: Ensemble of rough-neuro-fuzzy systems for classification with missing features. In: FUZZ-IEEE, pp. 1745–1750. Hong Kong (2008)

    Google Scholar 

  16. Kumbasar, T., Eksin, İ., Güzelkaya, M., Yeşil, E.: Big bang big crunch optimization method based fuzzy model inversion. MICAI 2008: Advances in Artificial Intelligence. LNCS, pp. 737–740. Springer, Berlin (2008)

    Google Scholar 

  17. Kumbasar, T., Eksin, İ., Güzelkaya, M., Yeşil, E.: Exact inversion of decomposable interval type-2 fuzzy logic systems. Int. J. Approximate Reasoning 54, 253–272 (2013)

    Article  MATH  Google Scholar 

  18. Matyja, A., Simiński, K.: Comparison of algorithms for clustering incomplete data. Found. Comput. Decis. Sci. 39(2), 107–127 (2014)

    Google Scholar 

  19. Mundfrom, D.J., Whitcomb, A.: Imputing missing values: the effect on the accuracy of classification. Multiple Linear Regres. Viewpoints 25(1), 13–19 (1998)

    Google Scholar 

  20. Nowicki, R.K.: Rough-neuro-fuzzy structures for classification with missing data. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39(6), 1334–1347 (2009)

    Article  Google Scholar 

  21. Ridders, C.: A new algorithm for computing a single root of a real continuous function. IEEE Trans. Circ. Syst. 26, 979–980 (1979)

    Article  MATH  Google Scholar 

  22. Sikora, M., Simiński, K.: Comparison of incomplete data handling techniques for neuro-fuzzy systems. Comput. Sci. 15(4), 441–458 (2014)

    Article  Google Scholar 

  23. Sikora, M., Krzykawski, D.: Application of data exploration methods in analysis of carbon dioxide emission in hard-coal mines dewater pump stations. Mechanizacja i Automatyzacja Gornictwa 413(6) (2005)

    Google Scholar 

  24. Sikora, M., Sikora, B.: Application of machine learning for prediction a methane concentration in a coal-mine. Arch. Min. Sci. 51(4), 475–492 (2006)

    Google Scholar 

  25. Simiński, K.: Neuro-rough-fuzzy approach for regression modelling from missing data. Int. J. Appl. Math. Comput. Sci. 22(2), 461–476 (2012)

    MATH  Google Scholar 

  26. Simiński, K.: Clustering with missing values. Fundamenta Informaticae 123(3), 331–350 (2013)

    MATH  Google Scholar 

  27. Simiński, K.: Rough fuzzy subspace clustering for data with missing values. Comput. Inf. 33(1), 131–153 (2014)

    Google Scholar 

  28. Simiński, K.: Rough subspace neuro-fuzzy system. Fuzzy Sets Syst. 269, 30–46 (2015)

    Article  Google Scholar 

  29. Timm, H., Kruse, R.: Fuzzy cluster analysis with missing values. In: NAFIPS, pp. 242–246. Pensacola Beach, FL (1998)

    Google Scholar 

  30. Varkonyi-Koczy, A., Almos, A., Kovacshazy, T.: Genetic algorithms in fuzzy model inversion. In: FUZZ-IEEE, vol. 3, pp. 1421–1426 (1999)

    Google Scholar 

  31. Wagstaff, K.L., Laidler, V.G.: Making the most of missing values: object clustering with partial data in astronomy. In: ADASS XIV, vol. 347, pp. 172–176. Pasadena, California, USA (2005)

    Google Scholar 

  32. Xu, C., Shin, Y.: A fuzzy inverse model construction method for general monotonic multi-input-single-output (MISO) systems. IEEE Trans. Fuzzy Syst. 16(5), 1216–1231 (2008)

    Article  Google Scholar 

  33. Yeh, I.C.: Modeling of strength of high-performance concrete using artificial neural networks. Cement Concr. Res. 28(12), 1797–1808 (1998)

    Article  Google Scholar 

  34. Zhang, S.: Parimputation: from imputation and null-imputation to partially imputation. IEEE Intell. Inf. Bull. 9(1), 32–38 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Siminski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Siminski, K. (2016). Imputation of Missing Values by Inversion of Fuzzy Neuro-System. In: Gruca, A., Brachman, A., Kozielski, S., Czachórski, T. (eds) Man–Machine Interactions 4. Advances in Intelligent Systems and Computing, vol 391. Springer, Cham. https://doi.org/10.1007/978-3-319-23437-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23437-3_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23436-6

  • Online ISBN: 978-3-319-23437-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics