[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Model Counting for Complex Data Structures

  • Conference paper
  • First Online:
Model Checking Software (SPIN 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9232))

Included in the following conference series:

  • 780 Accesses

Abstract

We extend recent approaches for calculating the probability of program behaviors, to allow model counting for complex data structures with numeric fields. We use symbolic execution with lazy initialization to compute the input structures leading to the occurrence of a target event, while keeping a symbolic representation of the constraints on the numeric data. Off-the-shelf model counting tools are used to count the solutions for numerical constraints and field bounds encoding data structure invariants are used to reduce the search space. The technique is implemented in the Symbolic PathFinder tool and evaluated on several complex data structures. Results show that the technique is much faster than an enumeration-based method that uses the Korat tool and also highlight the benefits of using the field bounds to speed up the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. RelSat tool. http://code.google.com/p/relsat/

  2. LattE (2013). https://www.math.ucdavis.edu/~latte/

  3. Adje, A., Bouissou, O., Goubault-Larrecq, J., Goubault, E., Putot, S.: Static analysis of programs with imprecise probabilistic inputs. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 22–47. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  4. Barvinok, A.I.: A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res. 19(4), 769–779 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beschastnikh, I., Brun, Y., Schneider, S., Sloan, M., Ernst, M.D.: Leveraging existing instrumentation to automatically infer invariant-constrained models. In: ESEC/FSE, pp. 267–277 (2011)

    Google Scholar 

  6. Birnbaum, E., Lozinskii, E.L.: The good old davis-putnam procedure helps counting models. J. Artif. Intell. Res. (JAIR) 10, 457–477 (1999)

    MATH  MathSciNet  Google Scholar 

  7. Borges, M., Filieri, A., d’Amorim, M., Păsăreanu, C.S., Visser, W.: Compositional solution space quantification for probabilistic software analysis. In: PLDI, pp. 123–132. ACM (2014)

    Google Scholar 

  8. Bouissou, O., Goubault, E., Goubault-Larrecq, J., Putot, S.: A generalization of p-boxes to affine arithmetic. Computing 94, 189–201 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on Java predicates. In: ISSTA, pp. 123–133 (2002)

    Google Scholar 

  10. Cadar, C., Dunbar, D., Engler, D.R.: Klee: unassisted and automatic generation of high-coverage tests for complex systems programs. In: OSDI, pp. 209–224 (2008)

    Google Scholar 

  11. Chistikov, D.V., Dimitrova, R., Majumdar, R.: Approximate counting in SMT and value estimation for probabilistic programs. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 320–334. Springer, Heidelberg (2015)

    Google Scholar 

  12. Clarke, L.A.: A system to generate test data and symbolically execute programs. IEEE Trans. Soft. Eng. 2(3), 215–222 (1976)

    Article  Google Scholar 

  13. Cormen, T.H.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  14. De Loera, J.A., Dutra, B., Köppe, M., Moreinis, S., Pinto, G., Wu, J.: Software for exact integration of polynomials over polyhedra. ACM Commun. Comput. Algebra 45(3/4), 169–172 (2012)

    Article  Google Scholar 

  15. Filieri, A., Pasareanu, C.S., Visser, W.: Reliability analysis in symbolic pathfinder. In: ICSE, pp. 622–631 (2013)

    Google Scholar 

  16. Filieri, A., Pasareanu, C.S., Visser, W., Geldenhuys, J.: Statistical symbolic execution with informed sampling. In: FSE, pp. 437–448 (2014)

    Google Scholar 

  17. Galeotti, J.P., Rosner, N., Pombo, CGL., Frias, M.F.: Analysis of invariants for efficient bounded verification. In: ISSTA, USA, pp. 25–36 (2010)

    Google Scholar 

  18. Geldenhuys, J., Dwyer, M.B., Visser, W.: Probabilistic symbolic execution. In: ISSTA, pp. 166–176 (2012)

    Google Scholar 

  19. Ghezzi, C., Pezzè, M., Sama, M., Tamburrelli, G.: Mining behavior models from user-intensive web applications. In: ICSE, pp. 277–287 (2014)

    Google Scholar 

  20. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In: PLDI, pp. 213–223 (2005)

    Google Scholar 

  21. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic programming. In: ICSE FOSE, pp. 167–181 (2014)

    Google Scholar 

  22. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: a tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Galeotti, J., Rosner, N., Lopez Pombo, C., Frias, M.F.: Taco: efficient sat-based bounded verification using symmetry breaking and tight bounds. IEEE Trans. Soft. Eng. 39(9), 1283–1307 (2013)

    Article  Google Scholar 

  24. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng. Methodol. 11(2), 256–290 (2002)

    Article  Google Scholar 

  25. Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized symbolic execution for model checking and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 553–568. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. King, J.C.: Symbolic execution and program testing. Comm. ACM 19(7), 385–394 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lisper, B.: Fully automatic, parametric worst-case execution time analysis. In: Proceedings of the 3rd International Workshop on Worst-Case Execution Time Analysis, WCET, pp. 99–102 (2003)

    Google Scholar 

  28. Luckow, K., Păsăreanu, C.S., Dwyer, M.B., Filieri, A., Visser, W.: Exact and approximate probabilistic symbolic execution for nondeterministic programs. In: ASE, pp. 575–586. ACM (2014)

    Google Scholar 

  29. Luu, L., Shinde, S., Saxena, P., Demsky, B.: A model counter for constraints over unbounded strings. In: PLDI, p. 57 (2014)

    Google Scholar 

  30. Monniaux, D.: An abstract Monte-Carlo method for the analysis of probabilistic programs. In: POPL, pp. 93–101 (2001)

    Google Scholar 

  31. Nori, A.V., Hur, C.-K., Rajamani, S.K., Samuel, S.: R2: an efficient mcmc sampler for probabilistic programs. In: AAAI Conference on Artificial Intelligence (AAAI). AAAI, July 2014

    Google Scholar 

  32. Pasareanu, C.S., Visser, W., Bushnell, D.H., Geldenhuys, J., Mehlitz, P.C., Rungta, N.: Symbolic pathfinder: integrating symbolic execution with model checking for Java bytecode analysis. Autom. Softw. Eng. 20(3), 391–425 (2013)

    Article  Google Scholar 

  33. Pestman, W.R.: Mathematical Statistics. De Gruyter, Berlin (2009)

    Book  MATH  Google Scholar 

  34. Phan, Q.-S., Malacaria, P., Păsăreanu, C.S., D’Amorim, M.: Quantifying information leaks using reliability analysis. In: SPIN, pp. 105–108. ACM (2014)

    Google Scholar 

  35. Rosner, N., Geldenhuys, J., Aguirre, N., Visser, W., Frias, M.F.: Bliss: improved symbolic execution by bounded lazy initialization with sat support. IEEE Trans. Soft. Eng. 99, 639–660 (2015)

    Google Scholar 

  36. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic programs: inferring whole program properties from finitely many paths. In: PLDI, pp. 447–458 (2013)

    Google Scholar 

  37. Tillmann, N., de Halleux, J.: Pex-white box test generation for NET. In: Beckert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  38. Turjan, A., Kienhuis, B., Deprettere, E.F.: A compile time based approach for solving out-of-order communication in Kahn process networks. In: ASAP, pp. 17–28 (2002)

    Google Scholar 

  39. Visser, W., Pasareanu, C.S., Pelanek, R.: Test input generation for Java containers using state matching. In: ISSTA, pp. 37–48 (2006)

    Google Scholar 

  40. Yorsh, G., Reps, T.W., Sagiv, M.: Symbolically computing most-precise abstract operations for shape analysis. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 530–545. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  41. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to Simulink/Stateflow verification. In: HSCC, pp. 243–252. ACM (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Filieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Filieri, A., Frias, M.F., Păsăreanu, C.S., Visser, W. (2015). Model Counting for Complex Data Structures. In: Fischer, B., Geldenhuys, J. (eds) Model Checking Software. SPIN 2015. Lecture Notes in Computer Science(), vol 9232. Springer, Cham. https://doi.org/10.1007/978-3-319-23404-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23404-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23403-8

  • Online ISBN: 978-3-319-23404-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics