[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Model-Guided String-Based Approach to White Matter Fiber-Bundles Extraction

  • Conference paper
  • First Online:
Brain Informatics and Health (BIH 2015)

Abstract

In this paper we present a new model-guided approach to extracting anatomically plausible White Matter fiber-bundles from the high number of streamlines generated by tractography algorithms. Our approach is based on: (i) an approximate shape model of certain fiber-bundles constructed by an expert operator; (ii) a particular string representation of fibers; (iii) a new string similarity metric. It transforms the fiber-bundles of both the model and the tractography streamlines into strings and uses the string similarity metric for comparison and extraction tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wilson, M., Tench, C.R., Morgan, P.S., Blumhardt, L.D.: Pyramidal tract mapping by diffusion tensor magnetic resonance imaging in multiple sclerosis: improving correlations with disability. J. Neurol Neurosurg Psychiatry 74(2), 203–207 (2003)

    Article  Google Scholar 

  2. Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45(2), 265–269 (1999)

    Article  Google Scholar 

  3. Basser, P.J., Mattiello, J., LeBihan, D.: Mr diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)

    Article  Google Scholar 

  4. Catani, M., Thiebaut de Schotten, M.: A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44(8), 1105–1132 (2008)

    Article  Google Scholar 

  5. Mårtensson, J., Nilsson, M., Ståhlberg, F., Sundgren, P.C., Nilsson, C., van Westen, D., Larsson, E.-M., Lätt, J.: Spatial analysis of diffusion tensor tractography statistics along the inferior fronto-occipital fasciculus with application in progressive supranuclear palsy. MAGMA 26(6), 527–537 (2013)

    Article  Google Scholar 

  6. Zhang, S., Correia, S., Laidlaw, D.H.: Identifying white-matter fiber bundles in dti data using an automated proximity-based fiber-clustering method. IEEE Trans. Vis. Comput. Graph. 14(5), 1044–1053 (2008)

    Article  Google Scholar 

  7. Garyfallidis, E., Brett, M., Correia, M.M., Williams, G.B., Nimmo-Smith, I.: Quickbundles, a method for tractography simplification. Front Neurosci. 6, 175 (2012)

    Article  Google Scholar 

  8. Le Bihan, D., Mangin, J.F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., Chabriat, H.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging 13(4), 534–546 (2001)

    Article  Google Scholar 

  9. Arvo, J.: Graphics gems II. Elsevier (1994)

    Google Scholar 

  10. Levenshtein, V.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics-Doklady 10(8), 707–710 (1966)

    MathSciNet  Google Scholar 

  11. Caruyer, E., Daducci, A., Descoteaux, M., Houde, J.-C., Thiran, J.: Phantomas: a flexible software library to simulate diffusion mr phantom. In: ISMRM, Milan, Italy, May 2014

    Google Scholar 

  12. Powers, D.: Evaluation: From precision, recall and f-factor to roc, informedness, markedness & correlation (tech. rep.), Adelaide, Australia (2007)

    Google Scholar 

  13. Tournier, J., et al.: MRtrix: Diffusion tractography in crossing fiber regions. IJIST 22(1), 53–66 (2012)

    Google Scholar 

  14. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48(1), 443–453 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Ursino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Stamile, C., Cauteruccio, F., Terracina, G., Ursino, D., Kocevar, G., Sappey-Marinier, D. (2015). A Model-Guided String-Based Approach to White Matter Fiber-Bundles Extraction. In: Guo, Y., Friston, K., Aldo, F., Hill, S., Peng, H. (eds) Brain Informatics and Health. BIH 2015. Lecture Notes in Computer Science(), vol 9250. Springer, Cham. https://doi.org/10.1007/978-3-319-23344-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23344-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23343-7

  • Online ISBN: 978-3-319-23344-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics